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Abstract

This dissertation investigates the behavior of finite difference models of linear hy-

perbolic partial differential equations. Whereas a hyperbolic equation is nondispersive

and nondissipative, difference models are invariably dispersive, and often dissipative

too. We set about analyzing them by means of existing techniques from the theory

of dispersive'wave propagation, making extensive use in particulAr of the concept of

group velocity, the velocity at which energy propagates.

The first three chapters present a general analysis of wave propagation in differ-

ence models. We describe systematically the effects of dispersion on numerical errors,

ror both smooth and parasitic waves. The reflection and transmission of waves at

boundaries and interfaces are then studied at length. The key point for this is a

distinction introduced here between leftgoing and rightgoing signals, which is based

not on the characteristics of the original equation, but on the group velocities of the

numerical model.

The last three chapters examine stability for finite difference models of initial

boundary value prdblems We show that the abstract stability criterion of Oustafsson,

Kreiss, and Sundstr6m (GRS) is equivalent to the condition that the boundary permit

no rightgoing signals in the absence of leftgoing ones. Wave propagation arguments

yield a proof that for the typical instability of "strictly rightgoing" type, one has

unstable growth in the 12 norm, not just in the complicated GKS norm. We prove

that this growth is at least proportional to the number of time steps n for models

driven by boundary data, and to /n for models driven by initial data.

We show further that most GKS-unstable boundaries exhibit infinite reflection

coefficients, which gives an alternative explanation of instability with respect to initial

data. We conjecture that when an infinite reflection coefficient is present, the unstable

growth rate increases from Vf/- to n.

Throughout the dissertation, wave propagation id-as are also applied to various

more specialized stability problems. We identify new classes of unstable formulas,

including some in two space dimensions; derive new results relating stability to

dissipativity; give new estimates on unstable growth for problems with two boundaries

or interfaces; examine borderline cases that are OKS-unstable but 12-stable or nearly

so; and present an explanation based on dispersion for known results on instability in

,, norms.
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paper of Gesamo, Kriss, and Sundstrtm-hnccorth "OKS'-in Irn [Cu72j.

(See also ICoW,Ge75,Kr7lMiSt J.) This theory is powerful, but mathemnaic, oly and

w-nceptually difficult. The proofs involved are obscure enough that it is fair to my

that moot people apply the CKS relts without understanding them

This dissertation develop* the view that a finite difference model is sot JOel a

0. TNTRODUCTION mathematical corruption of an ideal problem. but a physical medium of a dilernt

kind with analysabie properties of Its own. Finite dilferance modues do not as-

hiblt the characteristic featares of hyperbollcity, webh an Sialt. speed of propegallea.

0.1 Purpos Instead, they act s dispense media, a subject about which a prea deal is kows

1Br,7,Wb74I. Wae propagatios In wacb media.i characterized by disperin of
Many problesm or physics and engineering take the form' of Apperlok te ms differet, frequencies anld by energy propagation at a frequency-dependeat upeed called

of partial dfferential equiee.o (C421. Som examsples of Aside is wh~ch thoe eqa the greup velocit. These effect. depend os the lnterfersce of distinct frequency
tiona see important are fluid mechanice (weather prediction, aircraft and turbine compenents, and therefore represent a step beyosd the superposition or Iadividual
design, oceanography... ), geophysics (earth modeling. petroleum prospecting .. ), Fourier modes. Our costention in that dispersive wave propagaion pheesena. are
magnetohydrodysamnae elasticity, and acoestce. In most Inatanes there In no hope the essential feature underlying much of the more subtle behavior of difference modue.
of obtaining analytical solutions, and one most resort to numerical approximatioen. In particular, the CKS stablity theory has a simple physical eplanation s nterm of
Of thes the meet Important are the finite difereace modlel., based on the idea ofgruveoiy
approximating par"ia derivatives by discrete differences.

An irony of the finite difference process, en Is well known, Is that the detailed Our interpretation of the main CKS resul t rums roughly en follows. Let a

behavior of finite differece formulas is generally a good deal mere comaplicated than difference model for an Initial boundary value problem be applied with bomogens

that of the differential equation@ they model. For the moot part thin is not a problem, boundary data. To be stable, the model meat admit en solution that grow expone-

because the nonphysical details are unimportant so long en the numerical solution tially in the number of time step (a result first eupleted by Godusov and Ryablenkl

converges to the correct physical relt when the grid is refined. Thin convergence [RIS?)). But in addition, It must admit n solution consisting of a collectios of

will normally take Pla provided that the difference model is conqsistrnt and stable wavns radiating from the boundary int. the Interior. Such waves mlight be Phisical

JRiO7,Guyli(. Therefore the analysis of the behavior of difference am"di traditiosally (i.e. smooth, eer to waves admitted by the differestial equation), or peaitic (not

redues to estimating truncation arnce by Taylor =ensons, tn ordier to determine smooth), but this distinction does not appear in the analysis. For a wave to propagate

consistency and asymptotic accuracy; and to some kind of investigation of stability. "Int the interior" means is the case, of a beundary at the left of a regin, for It to

Of thos the stability analysis in the much more difficult task.haeapstvgruvloiy

To check for stability In the case of linear problems with isnooth coefficient. The analysis also makes no explicit distinction between dissipative and ndle.

and no boundaries, it is essentially enough to make sure that the difference formula sipative difference formulas. Dissipativity, however, guarantee* a priori that meet

admits no exponentially growing Fourier modes IfliS7,Thfi9I. But for problems with wavelike modes cannot occur, and this limits the range of potential radiating solutins

beundaries, as are almost always present In practice, the question becomes mere that must be Investigated in checking for stability.

difficult. One can still posh through an analysis based on an exteeded notion of Thus we show that instability for Initial beundary valur problems Is a hind of

4growing modes,* but It in not straightforward. A general theory of thin kind was resionance phenonmenon, in which some energy-radiating solution can oecillate en,

developed hy Krdas and rolleaglues a decade ago and was reported Is an important tinselly at the boundary withost being rontinuslly forced by ishomogenenen



boundary data or by signals hitting the boundary from the interior. The ques- The wave propagation view is not always easy to shape into mathematical proofs.

tion arises a to the etent to which such resonance will be excited by rounding As a general rule, one can prove instability and determine a lower bound for its

errors, truncation errors, or other data. Regarding stimulation by boundary data, magnitude by studying unstable wave. with behavior regular enough ror asymptotic

we conclude that the aseonance will in general always be excited. But rot stimulated analysis. This is what we have done for the 12 results mentioned above. Proving

resonance by initial or field data, the matter or refectios oefficienlts becomes impor- stability, on the other hand, or establishing upper bounds for unstable growth rats,

-ant. Indeed one -'urpose of is dissertation is to demonstrate how closely stability takes a greater effort, because it requires consideration of arbitrary signals with no

for initial boundary value problems is tied, both rormally and physically, to reflection regular behavior.

phenomena. We show that the standard" GKS-instability is characterlsed by infinite As dispersive media with a periodic structure, finite difference models have a

reflection coefficients, leading to great sensitivity of the solution td energy bitting the great deal in common with solid crystals (and also with certain other periodic physical

boundary, hut that there are realistic borderline cases with finite or sero reflection systems, such as regular electric networks). Accordingly, the general features of

coefficients, and in these the instability is not so easily excited. wave propagation that we will discuss have close analogs in the solid state physics

literature (ito54,Br53,M&$9,So4. However, the analogy is least close in the area
0 . . or stability, which corresponds approximately to energy conservation ror physical

systems. For tryntals, energy conservation in one of the postulates from which local
Several difficulties have inhibited the theoretical and practical application of solution behavior may be derived, while in our contest, it is the local behavior that

the OKS theory. One, as moentioned above, is that the mathematics involved is is given and the stability that Is under question. (See, however, Part l or (8o54.)

complicated snd not clearly motivated. We hope that the wave Propagation point of

view can remove ostse of this mystery. A second is that the (KS stability definition is

complicated and unnatural-it gives estimates in a norm that one would not normally

be interested in. We will show that the group velocity analysis allows one to derive Three main themes will occupy us throughout the dissertation:

estimates foe most unstable cae in the simpler ts norm. How bst to measure (A) group velocity and parasitic waves... leftgoing and rightgoinlg solutions

stability for models of initisa boundary value problems is however a complicated (13) reflection and transmission at boundaries and interfaces;

qustion, to which there is no universal answer, and we will attempt to shed light on it (C) stability.

by a variety or examples and arguments. A third difficulty is that the algebraic procss Our first three chapters are devoted to ao exposition of the phenomena (A) and (B)

or testing for instability can be extremely difficult foe nontrivial initial boundary value and their relationship. Some of our results re old, but many are new, and this is

problem rmodels [CogO). Fundamentally our ideas do not help with this problem at the most systematic presentation or such material that has appeared to date. The

all. There is probably not much to be done about this in general, we believe, u the last three chapters are concerned with stbi;ity theory (C) for initial bounoary value

algebra reflects a physical behavior that is truly romplex. However, results will be problems. They present our analysis or the GKS theory a an outgrowth of (A) and

given that sortcut the analysis for special clsses, or problems. (B). This leads to new rccdt of various kinds. For a detailed ouUine sce 1O.3, below.

The "wave propagation" approach to stability vight be contrasted with the more The general purpose or this dissertation is to shed new light on the existing

standard 'semigroup" point of view. The latter ronsiders dilTeren.e models as time- theory of finite difference models, and to extend the theory where possible. However,

evolution operators, and characteristically investigates what "lrowth" can take place we suspect that most rruitfu applications or the wave propagation point of view

from one time step to the nect. The former views space and time more equally, and potentially lie in more novel and difficult areas that are only touched on hem, such as

investigates what qualitative changes occur between time steps- -which may indeed problems with variable cocffeients, nonlinear prol mcns, problems with characteristic

cause growth, but indirectly, boundaries, and multidimensional problems with irregular boundaries. If our belier is

3
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valid that the essential features of discretisation for hyperbolic problems are those or here has a complicated history. The dissertation refers primarily to the paper of

dispersive wave propagation, then further work on these lines ought to point the way Custafason, Krei, and Sundstr~m [Cu721, which seems to have dominated the field

to new and hitherto unrecognized phenomena, since its appearance in 1972. However, this emphasis does not do justice to many

important contributions by G. Strang , S. Osher, and others. In particular, Osber's

paper lOsf1fb obtains a large part of the main GKS result by different means. Osher

0.2 ]ai.r, considers only models that utisry a certain root sepzration condition, which rules out
many nondlesipative difference formulas (those admitting a wave with group velocity

Regarding the application of ideas or dispersive wave theory to the theory of 0); on the other hand, his result has the advantage of using the ft norm ratbsr than

difference models, I am aware of two Important sets of predecessors. The first are G. the more unwieldy G'KS stability definition.

Hedstrom and R. Chin, who in a variety or papers have applied wave theory arguments

to analyne many aspects of solution behavior and (Cauchy) stability [HeC5,He6OHe8, Here is a very brier survey or the history of stability theory ror diffrence nsodels of

He7SCh75,Chf,Ch79,Ch3J. Making etensive use or saddle-pint estimates, these initial boundary value problems. The first contributions were made by Codunov and

papers study stability in the maximum norm (see 11.4). analysis by modified equa- Ryabenki in the early I60's, who observed that a necessary condition for stability

tions (see 111.1. 1.2), and solution behavior near discontinuities. The emond are a. is that the spectrum of the time-evolution difference operator be contained in the

Vichnevetaky and his colleagues, who for particular semi-discrete model of us = a. unit disk in the limit as the mesh sioe becomes 0, and derived conditions for this to

(usually), analyse wave propagation for both smooth and parasitic waves V175,ete.. occur 1R671. This is the beginning of the use or normal mode sneksis in stability

Vichneveteky's papers do not perform explicit saddle-poaint analysis, and as a mesul theory ror initial boundary value problems, which pervades the subsequent results.

they do not obtain the kind or precise estimates derived by Hedstrom and Chin. The Godunov-Ryabenkii condition is an analog for initial boundary value problems

However, his interest in parasitic waves and In behavior at boundaries makes the or the von Neumann condition for initial value problems, and like the von Neumann

papers the met direct precursor to this dissertation. Vlchnevetky's work will be condition, it is necessary rue stability but not sufficient. The nest contributions were

summarised shortly in sa book with J. Bowles [Vii2). due to Strang snd to Kreiss. Strang applied a factorisation technique for Toeplits

Besides these, there are undoubtedly a large number of group velocity calculations matrices, related to the Wiener-Hopr method, to obtain necessary and suffiient

for difference models in the literature, most of which I am probably unaware of. To stability conditions ror a restricted set or difference approximations, namely those

the author of these I apologize In advance. Three references that I do know, from with purely homogeneous boundary conditions (St64,St6Gj. ly different methods,

geophysics, are the reports of Alfold, et Al. (A1741, lamberger, et l. [B" , and Krel. [Kr66 obtained a sufficient condition for stability of diagonalinable (essentially

Martineau-Nicoletis IMsBI]. These works are maiily concerned with smooth wavres scalar) two-level explicit dissipative models. In Osga], Other proved a similar result

rather than parasites; the first treats the acoustic (standard) wave equation, and the by an extension or Strang's approach, introducing general boundary conditions by

other two the elastic wave equation (pressure and shear). means of a finite-rank correction to the Toeplitz optrator for the interior difference

Similarly, there are no doubt a number of papers that compute numericl rfcl - scheme.

tie and transmissien coefllcientl for boundaries or interfaces, as dose here in 53 and These papers left two main gaps in the available theory. First. they did not sy

thereafter. I am aware or such calculations by Martineau-Nicoletis (Maft), D. Brown much about nondissipative models. Second, they did not deal with nondiagonalis-

[1Br7g,CI791, and Vichnevetsky [ViSItl. Only Vichnevetky makes a connection with able models. In another paper published in 1069, Osher made same progres on the

group velocity. The general description presented here or behavior at an interface In first problem, again by the Toeplit factorization technique, obtaining a result that

terms of left- and rightgoig waves admitted on either side appears to be new. weakens dissipativity to s separationor-roots condition O09b]. This was a quite

The stability theory for initial boundary value problems that is the main concern general theorem along the lines or "the absence of eigensolutions and generalised

I S
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eigensolutionts ensures stability," which we wcill discuss in 14. Keis, on the other in which the parasitic solution of one diffeece formula is related to the ninoor

haod, derived a sufficient condition for stability of dinoipative nondignalizable models solution or nother, whose speed of propagation is then obvious by cnistene,.; tV
in [KrfiSI, by making one of a Dunford integral to bound the powers or the discrete isoa calculation of group velocity in disguise Q(fr73j or IflMj, §20; IKr741 nr [Kr7.

tissneevolution operator. 117). In so early paper with Lundqyist 1(rallhj, Kreiss also defines the esoenp&

It remained to derive a stability conditios for general nondissipative models, and striclnonsontrsctinr difference formulno in terms of a quantity that is group veloni

if possible, one that would be necessary s well s suffilcient. The groundwork for without the name (see also [ApiR( and (Oseific). In fact, Tkm. 4 of [Kr6sbl Is ew

this was work by Kreims on matrix normal forms far initial boundary valor problems closely related to Then. 4.2.3 here. However, it seems clenr that the central posit

roe partial dlifferential equations (not difference models), published in [Kr7O). These, or group velocity In 'stability theory has not been seen before; to my knowledge, L

results led to necessary and sufficient conditions for well-powedus of hyperbolic words 'stability' and 'group velocity' have not appeared together in thk past.

partial differential equations in several spare dimensions. By an extensios of the

same ideas, the paper or Gustafeson, Kren. and Sundstrim, 10%,721 finally proved

ageneral necessary and sufficient stability theorem for (ooe-dliasesional) difference 0.3 Outline sand susmesa of ressults

models, dissipative or nondlissipatine, diagosalizable or nondlagoallabe. This dissertation is unfortunately quito lengthy, as the following detailed outline

Further additions to the stability theory since 1271 have mainly taken the form makes clear. To mitigate thin problem somewhat, a general index is provided at the
of embellishments of the GI(S theory. Custal..on in [Gu1 established connections end. Readers wishing to go as quickly as ponsible to the stability theory foe initial
between 01(3-stability and convergence; the main problem here is working around boundary value problems shnuld proceed to Chapter 4 alter reviewing Sections 1.1,
the idiosyncrassof the CKS stability definition as as to be able to treat nontero 1.2, 1.5, 2.3, and 3.1. Foe a quich view of our main stability ideas, am Sections 4.1,
initial dasta. Ciment (Ci? ,C721, Burns (Bu781, Tadmor [Tadlil), and Goldberg and 4.2, and 5.5. Published accounts correspnnding roughly to Chapters I and 4 can be
Tadmor ITalfi,Go7SguSlJ have proved additional results. GKS-fhke theorems have found in [Trfi21 and jTeS3(. respectively.

hees obtained for method-of-lisas schemes by Strihweeda, ISt7SL and for parabolie Chapter 1. We begin in 11 with a discussion of the behavior as, dispersive media
problems by Varain f&70,VaIl and Osher 10%721. Most receatly, attention baa of finite difference nrodels of the scalar equation an = ssu.. Our model approximates
shifted to problems in seversl spare dimensions JCOO,Mhfli(; in particular, sew resalts u(z,t) = u(jh,snk) by a qnantity e;', where h and J; are the space step size and
of Michelson's (MiSI) offer promise of a complete extension of the CKS theory to timne step anon. In 11.1 we define the covcepts of frequency w, "wne .number C, and
dissipative multidimensional models. In addition, there have baes numerous papers dispersion relatiouns, and relate these to cornsistevncy, accuracy, and modified equations.
that apply the CKS theory to study stability of particular difference formulas or We illustrate these ideas by applying them to a number of well-known difference
classes of them. including (Ab7fi,Abgl.IBeSI,Be73,CoSO.Go7fih.0174,Of7fi,Su74j. formulas, which continue to serve as examples throughout the dissertation. (These

virtsally all of these results, beth pereni ,g and following JG072j, can be given are summarized in Appendix A.) Section 1.2 defines phase speed c( ,w~) and group,

wave propagation interpretations. For exameple, several of them amont to statements speed C((, w), and derives the latter by the method ef sationaryn phase. The effeet

that spontanseeus radiation from the bondary implies instability, but with the radia- of group velocity in illustrated by numerical experiments involving wee packets and

tion restricted to nero-frequency components that correctly mimice the differential mace front,. Thin. 1.2.! points out that for a general nondisoipative difference model,

equation, instead of the more general posibility of parasitic waa radiating energy errors in C are greater tban errors in c by a factor equal to the order of dispersion.

according to the group velocity lllulS.Kr6B,Ta8ll. None of them amr presented in this Section 1.3 shows the connection between grnup velocity and dispersion, with further

way, hot the relevance to stability of "energy propagating in the weong direction" is numerical illostrations. In 11.4 we apply threse ideas to show that certain known

mentioned in some of Kreosss papers. Is at least two place he pelrfom a calculation results on I.,msatahililp of difference models for p 9d 2 can be explained quantitatiely
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in terms of dispersion and dissipation. In §1.5 we examine parasitic waves, and show of this theory by showing its many effects theoretically and with numerical demonstra-

that they too are governed by a group velocity. More numerical illustrations are given. Lions. The most original ideas here are those related to multidimensional problems

New concepta fr o-resersinq and t-rencrssng formulas are introduced and applied in (§1.6) and 4,-instability (§1.4). None of the results have much technical depth; per-

Thin. 1.5.1, and Thin. 1.5.2 shows that most nondissipative formulas are r- or r- haps the least trivial is the general justification of group velocity in Thins. 2.3.1 and

reversing. Section 1.6 briefly surveys wave propagation in mutidimensionsl difference 2.3.2.

models, where energy propagation is governed by a sctor roup velocity C and wave Chapter 3. In §3 we begin to deal with boundaries and interfaces. Section 3.1

packets can be tracked by a process of numerical ray tracing. Some of these ideas ae describes our general procedure for computing reflection and trsnsmission coeffinient

new, but we do not develop them. (More details c n be found in [Tr82j.) for steady-state solutions of the form us = z"v: first determine all lefigo
ing sond

Chapter 2. Chapter 2 sets out to make the ideas of §I more general and more rightgniug signals admitted away from the interface, as defined in §2, then match these

rigorous. In J2.1 we define the general eonstant-coefficient solar difference formula Q by algebraic interface conditions. This procedure depends upon a numerical analog of

in terms of shift operators K and Z, and analyse what solutions it supports that are the Sommerfeld rodiation condition. Section 3.2 computes reflection and transmission

regular in x or I (Thins. 2.1.I,2.1.2). In addition to and w, we now begin to work formulas for a large number of examples involving both boundaries and interfaces,

with arbitrary complex space and time nariation factors = t- e and 2 = &k. and verifies two of these with numerical experiments; the most complicated example

The new concept of a separable formula is defined, and it is shown that for separable involves an abrupt change between two arbitrary difference formulas, for which a

formulas, C(w) factors into Ci(()C1(wa). Section 2.2 defines Cauchy stability and van der Monde matrix comes into play. Section 3.3 considers energy conserestio -1

relates this to the eon Neumann condition and a root condition (Thin. 2.2.1). It also interfaces, and §3.4 discusses cutofffrequencies and stop bands. Section 3.5 h A the

defines ()-dusipatiily and relates this to the new concepts of t-disspsitivity and total question of how a knowledge of the beohas at an interface of eash .umponent z* c n

dssipaticity (Thms 2.2.2,2.2.3). Thin. 2.2.4 points out that if Q is z- or t-dissipative, be synthesized to predict 'the interaction of a general toave packet with a boundary.

it cannot be a. or I-reversing. In 52.3 we establish that the group velocity makes sense The answer requires solution of an integral equation, and appears to be related to the

in a general way by proving that every wave Admitted by any Cauchy stable formula, Wiener.Hopf technique (but not in the same way as the results of Strang and Osher

whether dissipative or nondissipative, has a group velocity (Thin. 2.3.1). Thin. 2.3.2 mentioned in §0.2). This approach is new and, we believe, quite promising, but we do

proves further that C is the limit of the translation speeds ofevanescent waves, and not develop it. Section 3.6 goes on to extend our reflection and transmission results to

that the sign of C can be determined by a perturbation test. We als define the new diagonalizable systems of difference equations. First, interface problems are reduced

concepts of statonary, rightgoing and strictly rightgoisg, leftgoing and strietly Uegoing to boundary problems by a device known As the folding trick. This leads to a general

signals in terms of group velocity, and these are summarised in Table 2.1. Section 2.4 reftection coeffcient matrix (DI]tD
I  

describing reflection and transmission at an

applies most of the results up to that point to the interesting case or taree-point linear arbitrary boundary or interface.

multstep formulas studied by Beam, Warming, and Yee j1c79,Htefl]. New results Many of the ideas of Chapter 3 have appeared before, but it is likely that this is

are proved relating A.stbility and strong A-stability or such formulas to their wave the first general description of how to . alyze numerical wave behavior at boundaries

propagation behavior (Thi. 2.4.1) and t-disoipativity (Thin. 2.4.2). Finally, Section and interfaces. What makes the general treatment possible is the elimination of any

2.5 shows that ali of thp results established for scalar models carry over directly to distinction between physical and parasitic waves, and indeed of any reference to the

diagonalisable systems. In particular, Thin. 2.5.1 describes the general breakdown of system of equations being modeled, in favor of the notion af leftgoing and rightgning

time-regular vector solutions into leftgoing and rightgoing components. signals determined by the numerical group velocity.

In summary, Chapters I and 2 present the essentials of dispersive wave theory for Chapter 4. In §4 the dissertation turns to stability for initial boundary nalue

finite difference models in the absence of boundaries, and document the importance problems (or interface problems), which we view as a direct outgrowth of reflection

~10
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and transmission studies. Most of the ideas in this chapter arc entirely new. They but in practice nearly stable with respect to initial data, and stable with respect to

are however heavily influenced by, and closely tied to, the results or Gustarason, the introduction of a second boundary. Section 5.3 examines GKS-unstable solutions

Kreis, and Sundstrm (GU721. Section 4.1 begins by explaining the instability nf a consisting orightgoing but not strictly rigAtgo'ng signai., especially waves with group

simple example or an initial boundary value problem model in two ways. First, the velocity 0. For this case too, we conclude that instability appears in practice mainly in

spontaneous rightgoing solution view considers that the model is unstable because response to boundary data, and it is weak. In 15.4 we exhibit a class or GKS-unstable

it admits as a solution a set or waves all or which are rightgoing (pointing from problems with both non-strictly rightgoing instabilities and sero reflection coefficients,

the boundary into the field). Second, the infinite reflection coefficient view explains the transparent interface anomaly, iqd these are 12-stable. Finally. 15.S sum srissis

instability as the existence for some frequency as a right/left reflection coefficient that our views of stability for models of initial boundary value problems in general, and

is infinite. Sections 4.2-4.3 proceed to analyze mainly the first point of view, which of the GKS theory n particular.

is equivalent to the CKS theory. In §4.2 we first present the GoduneRyabenkii Chapter S. The last chapter examines stability for problems with nestrsi

stability criterion as a statement on strictly rightgoing solutions with jzj > 1 (Thin. boundaries or interfaces, such as might occur in modeling the domain z E I0. t[,

4.2.1), and s a determinant condition involving the reflection matrices DH
1 

and D
01  

or in mesh refinement, or in composite difference or boundary formulas. This is a

(Thin. 4.2.2). Then it is shown that the existence or an arbitrary spontaneous strictly natural place to apply wave propagation ideas, because a purely algebraic approah

rightgoing solution implies ts-instaiility, with a growth rate in f2 proportional to V/ beetvc. exceedingly complex. We start in f5.2 with one interrace, eswsivning known

(Thm. 4.2.3). We conjecture further that this rate becomes n if an infinite reflection results of Ciment and Tadmor to the effect that diasipativity implies stability. These

coefficient is present. Thin. 4.2.4 shoe that eoch an unstable nolution always coos we extend to more general results in which the notion or t-disspstairy introduced

growth at rate n with respect to boundary data. (Proofs ace deferred to Appendix in 12 plays a natural pact (Thins. 6.2.l,6.2.2). Section 6.3, however, is devoted to

B ) Section 4.3 moves to the stricter OKS stability definiltion, showing by a wave proving by a counterexmaple that no such theorem holds if two or more interfaces

propagation argument why even a non-strictly rightgoing steady-state solution is ae present, contradicting a claim of Oliger 101791. Thus dissipativity is not a strong

GKS-unstable (Thins. 4.3.1, 4.3.2). In Section 4.4 the results obtained in 14.1-14.3 enough condition to yield stability in general. For an alternative approach, we move

are specialized to the case of dissipative difference models. Section 4.5 applies the on in §6.4 to consider reflection cofficiente at the boudsries. Thin. 5.4.1 shows that

main stability results to describe some general classes of unstable difference i.,dels ir all reflection coefficients are at most I in modulus, then stability for two-boundary

in one space dimension, which ar extensions or known examples (Thins. 4.5.1-4.5.4). problems is guaranteed. We apply this result to duplicate and extend certain results

Section 4.6 considers sitbility for multidimensional initial boundary value problems, of Beam, Warming, and Yee related to their concept of P-stability for two-boundar

sketching the relation between instability in this context and solutions with righltoing problems (Thins. 6.4.2,6.4.3). The some reflection coefficient arguments can be applied

retor group velocities C, as described in §11. An example is described in Thin. 4.6.1. quite generally, and in 16.5 we consider what growth rates are possible in several

important two-boundary or two-interface contexts. The variety of possible growth
Chapter 5. Although certain classes of d,fference models ace unambiguously rates turns out to be considerable, and they are summarised in Table 6.2. These

stable or unstable, there are various borderline cases for which the situation is lens arguments justiry, for example, our claim in 15 that GKS-unswible growth will not

clear. This has always been a source or difficulty in stability theories for initial be converted to exponential growth when a second boundary is introduced unless an

boundary value problems, and in particular it is responsible for the complexity of the infinite reflection coefficient is prescnt. Finally, Section 6.6 discusses very briefly the

CKS stability definition. Chapter 5 is devoted to a discussion based on numerical prospects for problems with three or more interfaces.

experiments of four important classes of borderline cases that are GKS-unstable but

stable in some other respects. First, Section 5.2 discusses models that have finite

reflection coefficients. These are found to be unstable with respect to boundary data,

11 12
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Let (1.1.1) now be modeled by a finite difference formula. For this we aet up a

regular geld in z and f with spatial step site h, temporal step site k, and smsh to

X ewh/It, and meek to approximate u by a grid function v:

,j sin % ,sk), j,u E Z.

1. WAVE PROPAGATION IN FINITE DIFFERENCE MODELS One difference formula for (1.1.1) that we will consider repeatedly. has basi lg (LF),

given by

LY F: ~ ~ t(~~ (1.1.6)

1.1 Dispesrsies relations assd asodiifid equationsSusitng(.4)no L )gve

Throughout this dissertation we are, concerned with the artificial effects intro-

duced when a partial differential equation is approximated by a finite difference C-6 - Xir(gi
t
h ... ie),

scheme,. Since these effects app'uar no matter how elementary the equation under

study may be, wet will mainly consider "e a model the simplc evie-dimssessiessal went that 11,

.q.ai60% sin .k - -Xio Ch.(.1)

ox -AUs., a y60. 1.1)This is the diopersion relsa for LF. For small wkt and Ch, which is to my for

If initial data are rmeified for r E (-0no.no), wavo that nre well resolved on the geid. (1.1.7) approximates (1.1.) clesely, but

U(' )- ~zas wk, and Ch increase, the approximatison becomes poor. Moreover unlike (..)
,m~xO) =1(n, (112)(1.1.7) i. periodic With period 2. in both Ch and kA. The explanation of thin lsethal

then the solution to (1.1.1) ror all I > 0 is the translation because of the discreeteness of the grid, any pair, (Ch, k) 'is Indlotinguishbs. on the

a(Z,1t) - f(s + uS). (1.1.3) grid from all of its *saInues (Ch + 2pir k + 2vw'). Therefore it Is enough to consider
the fundamental region (fh,w.r) E (-v,e)'. Figure Its shows a plot of (1.1.7) is

To analyse the behavior or (1.1 .1), one may look ror Fourier mode" this regin ror a - -I ad A = .5. It is apparent that even here, each of ( or w'

e~z~) eN4el (1..4)corresponds in general to two values, of the other variable."

where w is the (temporal) frequoey and C is the waave number". Obviously (1.1.4) So1n o ,I 1..) n ban
will satisfy (1.1.1) if and only if 7 - (), fuss CA). 1.8

Bly tahing the ntandard branch of the inverse sine herr, we confine our attention to
c onditin known an the dispersion relation foe 11. Although standard Fourier the component of the dispersion relation tlhat pass though the origin in Fig. 1.1a.

.aalysis assumes w'. fE 11, 11.1.5) holds for arbitrary w~, Cff6 _______

_________ *~~Tise hil-feeoosy lobe ofthediperift srves risible Is Fig. 1.1i(sadti)seogsue

*We wilt be concernoed with Rneer equations only. so it s aesough to study compespe expense- of optical moade. of vibration in crystain, so called because their frepuenoies are sunhkLtnat

title. Results for comwputations in real arithmetic then folio,, by taking real parts, ore qsiv. they aw normnally elted by light rather than ound Bo1441. The physics . quite differentL,

alently, b, add 'g a -po.npe - to %. a ungute. The one of e-4 rather than e4' Im hoevner. lr opt" cal des, represrnt alternative modes of spatial oscllation, caused by doe
(1.1.1) 1. designed to .make the fonmihim foe phse med group velocity -secme with-%t rewniee of multiple species or uaors, whereas the highfeeqsrorcy components In Fri. 1.1
mtinus sigs; wee 11.2. -ist from the time dioretisatnel.
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Expanding ror ck x 0, we get the series

W - _f I - h)' + 1 -10(Xa)s0
+ 

9C)
4  +..] (1.t.91

The first term here agrees with an.1.5), and this must be true for any con si t

difference model. From the next term in the series, it is evident that the errors

committed by LF will increase with the square or cA. Formally, (I.1.9) is equivalent

to a differential equation or Infinite order,

,5 .O[,, + ---- " n...- 0(') + f ha . . (1.l}

Since (1.1.10) contains derivatives of higher order than 1 but no even-order derivative,

LFis said to be dispersive but not disipatie. The significance or dispersion is that

different wave numbers will travel at different speeds, so that an initial pulse will

7 change shape as time pases. We will xamine this in the net fe sections. Diesipacon

will be defined more precisely in J2.2.

As a familiar dissipative scheme, we may consider Lax-We ndrae (LW)hJ LW: 17 - - j(,,+, -7._,)+ Lj2(97 -2e, +,;_.,). (1.1.11)

Corresponding to (1.1.7) and (1.1.10), we find for LW the dispersion relation

(a) LF (b) CN (e) LF4 -i(oi" - 1) = -ha do ch + 2i(ke),viol , - (1.1.12)

and the formal differential equation or infinite order

FIG. 1.1. Numerical dispersion relations for difference models 11, .r.+ s t , h',.- )

CN, and LF4 of ut = -v., plotted for mesh ratio X = .5. Each plot . = a -+

shows the region -/h,w/hJ' of ((,)-space. The slope at a point I + 5Xa)2 - 6(a)
4

. (a) - 0,a)' o I

(,.) is the correspondisg group velocity. Additional dispersion plots + A ... 48

are given in Appendix A. 120 (1.1)

It is the non-centered shape of the stencil for LW that gives rise to the complex

dispersion relation (1.1.12) ond to the even-order derivatives in (1.1.13).

If a difference model is applied to a set of initial data that is smooth in the mss

that most of the energy in its Fourier transform has ch, .1; C I, then one my

expect that the model will behave approximately like a differential equation obtained

by taking the first few terms of an expansion like (1.1.10) or (1.1.13). This is the

idea behind modijled equatios (also known as model.equslons) or difference rormulas

[CI,83,Wa74]:

IS lS
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Defo. Let a consistent difference model Q of (1..) be formally expanded asa Thoem relations ane plotted, ason forea - -1 and A - .1, Is Fig. NUb-c Ose ca

differential equation of infinite order as in (1.1.13). The modified eqsation of Q Is me that I.74 approximates (1.1.5) better at the origin than LI or CN.

the differential equation Here ame two further examples ot dissipative foreuis. An Implicit formula with

- ~ ~ 0 a. - 3A- ~ ABp , 112) ,A -2 Is hackwards Ruler (811):

with a odd snd 0 even, obteioed by dropping all but the firat dissipative and BraB:t, 7 j(7~ 7) i1u
dinpersive tormos from this equation, Uf there ane no dissipative terms. we drop the An implicit formula with a - , 0 - 4 In leog frog wide dA.eueso (Lrd) (KeTS,
second termad set 0 - o. 11 "1.

For example, the modified equation hor LW Is ~ 7 .'- .~ ) ~ -o ~~ '4 -

+ h -- E(1.1312)

We define further where C 4E Ue In the rapga < I < 1.
The properties of the diffeence schemes we have meetlosed wre omoained Is

Deft. The Integers a sad 0 ame the order of dispesion snd order of Appendix A. The Appendix sine gives Information on several oth" formulaic- Upiad,
diiseipatioss of Q. The order of accuracy Isn l(ta,P -1. (Consistency Implies Box, Method of Lines, Lax-Friedrich. and Lap Frog for the muead-order equastion
that the order of accuracy in at eat 1.) //1

Thun LW, with o 3 Sand 0 - 4, is accurate of order 2, dispersive or order 3, and

dissipative of order '4. if P < a, thee dissipation dominates dispersion at low *ave

numbers, while If a < 0 the reverse holds. We will wee in 11.4 that a difference scheme 1.2 Phase speed end group speed

for (1.1.1) in stable In L. rmsru, is V& 2, only in the former cas. Consider now a Fourier mode (1.1.4) in whbch w sod Came both reel. It in obvios
in thin dissertation we will mostly be concerned with nondlipative schemes Ush that io thin wae", each point of fixed phase travel@ at a constant meat

1.7, because their Wave propagation properties are simple and they are more prome

to Instabilities. Two other noridlesipative imodelo of (1.1.1) that we will often consider £ ,(121

are the Impli cit scheme Crasi-Nlcolesc (ON),

* [ fIwhich in called the phasse speed. Is the ease or LF. (1. 1.8) sod (1.1.0) show thtthe~phase speed in given as a function of ( by

sod feurth-order leap frog (Lid) (fourth order In space, second order In time), - 1
eobi()as -(.2)

,F4 : j.1 )d -o*+ Is'[(e, - ) A ei..-e7.e. (1.1.17) ( t
l . ~ i Then LI introdsces phase speed errors that Increase quadratically as the grid becoma.

For CN the dispersion reletoU In more coarse. Nomerical aalysts often evaluate difference formuls hy eamining the,

2 tan - k - -X doAC, (1.1.18) phase or phase speed errors (see e.g. 14 of ICh?ObD).
I In most applications, however, phase speed is of only secondary importance is

and for 1.74 It in o i LX determining how an equation behave. According to a theory initiated by William
mn&=-in44A+ !±sin 21. (H1)Iamilton (1830) and Lord Rayleigh (1877), nd developed farther by Sommerfeld2 0
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(1912) and Brillouin, the flow of energy in a dispersive medium obeys a group speed, time >:0, the soutier (ignoring normalization factors) is

defined by h(123 z t= .001of

For example, suppose a whvre train is formed as a sinusoid with wave number C -
1 1 1 1

?( C

multiplied by a slowly varying envelope A(z). Then as t increases the envelope will Suppose x/f Is held fixed so t - so. This corresponds to moving our eyes riglatward

move, approximately unchanging in shape, at speed C(C), not c((). As a general at a fied speed s/t -count. After a long time, what will we see? Tb. answ comes

principle, phase speed controls the interference of waves, hot group speed controls fromn observing that s t inscreases, the exponential is (1.2.4) oedillator more and meoe

their propagation in space. rapidly with J, hence tends to cancel to 0 -a t - so. Assuming that.) is waoth

Eq. (1.2.3) seems surprising io any People at first, ewes Impessible. For example enough, which will be the case if f is localized, such cancellation will evidently take

one might argue, how cans the energy aseecatedl with a wave number ( feel the plane everywhere except for any c of sttseenr phase, at which

Influence of nearby wane numbers, s (1.2.3) Implies that it must?' The answer is

that polychromatic ways cannot be understood purely ;a terms er the individual W (w-C:e- 0,

mine waves that make them up-which after all, amre _ h unbounded Is extent, It is Ie

obvious that the position and structure of any po.,chromatic puse are determined Sw

by constructive and destructive interference between sine wave no that the sneeorgyoteeoeoree wiim nyaywv ubr htstyt~

associated with wae number (", in the ahsence ofrother wave numbers, is eat localized equtin In cothereord, orenessce wi th ol n wave numbermvs taasfytois

at all. Therefore it should not be surprising that its propagatio with I als depends eqatin he go e speeds nry1.2.ae3). av ube ovsasmttial

on the interaction of wave numbers. Nevertheless, eq. 11,2.3) takes some getting used The stationery phase argument is made quantitative in (Br0fi, (l7j, ad jWb74j.

to, and readers, unfamiliar with group velocity are encouraged to take a losh at )BOO, Is App. 8 (Lemma B.1), we will give a complete argument of a related kind in order

l~h74, or11,111).to prove the stability theorems of Chapter 4.
As &smplest example to motivate (1.2.3), suppose a inl~.,-in euslSince the stationary phase idea is applicable In various contents, we hae" left ot

is formed by the superposition of two waves, with (I ft C1 and t~ ft wen. Then details such as limits of Integration, but let us now be more precie for the problem

beating will occur. The composite wave is in fact equvalent to a single wave of wave of central interest. If ,f is a discrete function defined only for a - ,h, ,, E Z, thea.I

number (Cs + (1)/2 modulated by a sinusoidal envelope of wave number (Cs - 0/2, is defined by a Infinite sum and has domain j-w/h,w/h(, s the limits of integration

and simple algebra shove that asot increases, the envelope moves at the speed in (1.2.4) become *./h. For f E 4,(h), one han 1 E Lj)-x/h~z/hj, and the more

WN-- lcalized jr is, the smoother I will be; when f has compact support. I will be a
T;=,,trigonometric polynomial. Whether or not f has compact support, its domain ran be

Thisappoaces (.2.) i thelimt ( (, w. etended naturally from hZ to all of IR by simply evaluating (1.2.4) for arbitrary a.
A more general derivation of group velocity is based on the methofa statisrg The result Is a ronction in Ls-oo, so). namely the (finite or Infinite) trigonometric

phase, due to Lord Kelvin. (For further derivations. ace [M~741 and IJi7fi, and also interpolant through the values (f(jh)). By l'arsevsl's formula, the L, norm of this

12.3.) Let an initial distribution %(a,0) = f(a) have the Fourier transform I(C). Let extension will equal the 11 nor's of the discrete function f (if both are appropriately

this signal propagate with I according to a dispersion function w~ = wi(f).s Then at normalized), since beth are eq-.: to the 14 norm of 1. Therefore in late sections

-r- . testmeesof . rnltislue d*--Io rcluio, as isneededFwe canilstudyiftherenm wefcnnquarytheenergyf-ofarassignaylowithoutalw beingtb toogcar caulflasntt

schemes, see Appendix, R. whether we consider its domain to be continuous or discrete.
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Now &lts arn mine, the group speed for waves under LI. By differentiating (1.1.7) C -a - a(- 1) *A(fh)-' + o n

implicitly on both sides, one obtains

Thus C dqeru fromns i deu, speeid -6 bys lastimen g sovac 68C.

heasil: w - okh oo ( d(,Proof. Eq., (1.2.) Imrplis that for esall (h, wkh the dispersin Polaution Is

bases

Thin formula shown that the eect of discrotisatiou in a and i multiply each other;

for emall fh 'ad wk1 the former will tend to decrease ICI and the letter to Increase It U

(cf. 12.1). Since stallity requires Xlio) < 1, the flnt dffet will dominate. By (1.1.8). -

we ran eliminate wkb to get

C eeC -0 coonoAh (6) The result new fellows lrom (1.2.1) and (1.2.3). g

it- (0-in)' (i'A Thin theorem Implies that evidalation of difference formulas by the phase erros they

A comparison of (1.2.2) and (1.2.6) shown that for smeall Ch and wk, both crand C will Introduce may tend to uumuollstiniy oUlat Coolos.

he loe; than the ideal speed -a in magnitude, but that C will tag by roughly three DEMONS1tAhTiorA I.I. As the simplest demonstratios or group speed, Fig. 1.2

times en much. shows the propagation or a nearly monocromatic wave packet under LIP with a-

Similarly, diffeentiating (1.1.18) leads to the group speed -1, X - .4. Fig. J.2a pints the Initial signal on agrid with hA 1/160,

C -ee hcon' - 2+ en 4117 *(a, ) - CM0I sie (n,

for CN, and (1.1.19) gives

~cneCA- eon CA rwith C chosen en that there are 8 grid points per wavelength: CA - 2r/3 o .79,
C=--6 os( coc o I + 1;((A)2] (12j ft 251.3. The maet solution should move right unrhanged at speed 1, hut (1.1.2)

coa~k 2and (1.2.6) predict phase and group speeds
for 1.14. Since C - dw.udC, these functions represent the elopesi of the dispersion

relation plnts in Fi'g. 1.1. c no.9t, C as.74.
From thes formulas one ran calculate that with L14 and CN as with LI, C tage

the ideal value for CA so 0 by 3 limes en much as c. Thin fart gesernlisne as follows:
In this experimenit the asset slution was ned to provride valus at t = It, and thee

Theorem 1.2.1. Let Q beea nondisuipative model ofn u- as. usith IAs modo~d LI was applied up telI = 1. The result is shown In Fig. 1.2b. Apparently the wave
euaton ' pachet has propagated at just the group speed C, sot at the phase speed, aoud it

so -nas + Ar-ye- (1.2.9) has changed little in shape. If one Ioohed at the wave carefully as a function oft1,

for noeme odd integerr a Th fee - Ch, wk - 0, the phane end Sroup Wpe&d selia one would see phase create continually appearing at the trailing edge of the packet,

advrancing through it at speed c, and disappearing at the front. The same bhavior

c -a - (.IaAC)s+ o((CA), appeas in the ripples made when a stone in dropped into a pond, for gravity wame
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on deep water also satisfy a dispersive equatWon characterized by C < c.1
This example demonstrates a principle that makes analysis of group velocity

errors in difference schemes possible: there is more to the inaccourcy of a difference

(a) ti(.( | 0 scheme than truncation error. The wave in Fig. 1.2b differs completely from the

correct solution pointwse, and so an estimate of accumulated truncation oror weould

. .. . s''' ." -lead to the conclusion that the computation had been useless. But in fact, it has ben

qualitatively correct. Errors eased by differencing are not random perturbations,

but a systematic interaction of dispersions and possibly di sipatioss of vaiuns orders.

- " -- ... . . D ONSIRATION 1.2. As a second example, Fig. 1.3 show the prhpaption or

(h) ,t a2 wave front. In this experiment a sinusoidal forcing oscillation at the left boundary

'F radiates a wave into the interior of the interval 1O, 2J. flert h - 1/50, A -, and

s so s the scheme is CN with a -1. The oscillation

V(0, ) - lo tOOt

FIG. 1.2. Propagation of a wave packet with 6 points per wave*. kn been turned on at t = 0. At I - 1.5, only a low-frequency forereaser has

length (th as .79). The model ii LF for t. = -i. with h e 1/160,
X - .4. The packet moves not at the ideal speed 1, but at the group reached z = 1.5; the main oscillation of amplitude t has reached only * = 1.0 or I.I.
speed C *a -.74. suggesting that the wave front propagates at a speed roughly 0.7. Now to analyze a

problem like this we neod- to know how C depends on .s, not C. From (1.1.18) sad

(1.2.7), we obtain

For the given problem wik = 1, and (1.2.10) predicte C ft .75. This explaans FIg. 1.3.

t ( I Throughout this disertation, we will use both spatial and temporal Fourier transforms

I as caenient; most often it Will he the latter, since boondaries or Interfacos will he
0.5 jpesent.
0.0 For dissipative modes, the concept of group velocity breaks down. When dis

0. persion dominates dissipation, the predictions obtained by ignoring disipation may

". . . e1n rut for s-ch -,es one hua C jc. For short ripples on deep water (surface teesis

0 0.5 1 1.5 2 do.lnatd), ov tie other had. 0 hon bC = Jr. Other physical problems with C > c a
wave propagxtion in eluotic beans (C = 2c) and movement of a psrticle when viewed a a
quantum mechanical wave packet (C = 2c aso). (The classical particle speed coerespood
to C, not c.) Closer physical analogs to a minite diffeence model or (1.1.1) are presesed

FIG. 1.3. Propagation or a wave front generated by a forced oscilla- by probems in which C so c for long wavelengths but C 0 e for short o- Tboss
t;on with wk = I at the left bhindcary. The model is CN for u, = -%. include sund or electromagnetic wave propagation in random medi, (air. gils. rock) or
with h = 1/500, X o 5. The nave front travels at tlhe grnoup speed regular media (crystals, electric networks). lo these co e nd C begin to dff. when ihe
C as .75. w-vrlengLhs present ecome romnpabk to me phys i-l sae involved, such as distance

between molcul[ .
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not be far off, and we will make use or this in 11.4. One Justification o this claim ,

can be found In Thm. 2.3.1 together with Lemma .1; in fact, Thin. 1.2.1 could

be extended to even-order dissipative difference approximation&. Howverr, a Zene (r)a .AM
analysis requires a steepest descent argument that is more subtle thu the stationary

phase derivation [Brfi0. It turns out that rot dluspaUve waves one can distinguish

grosp, #4gul4 and energy velocities, all or which coincide In the nowlnipative case.

This theory was worked out by Brllnut and Sommerfeld In the early 100's and is ("2

described at length in tBr6O0. The application or steepest descent analynis to dismipa. ,_ __,_.___ ,_, _ _ ,

tive finite difference models of (1.1.1) is carried out by SrdJukovealn jSeG.qSa M, and

by Hedetrom sad Chin in [HeuO,Hei,iieOfHe75,Ch?5,Cb78i. The same approach

has been extended to models of a transport eqation by Cropp . "

1.3 lpaua

In a signal consisting of a superpesition of various wave parameter pairs ( , FIG. 1.4. Separation of a dlchromtlc wave packet with (h e 0

the energy associated with each pair will propagate at the group speed appropriate to and h ft I Into tw compannt The model i S rt u --a. with
1 /100, k, -m X

that pair. In gnerpl thes group speeds will be different, causing the signal to change

shape as It propagates. This separation of wave numbers is called dlspersion.

DImosRIATION 1.3 The simplest configuration that may lead to dispersion is

a superpositlon of two wave numbers, a dichr ms use packet Figure 1.4a shown

nuch a signal, gives by _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

U(e,O) - 1.-600-1/1'(1 + sin Illex. (a) t li0

This signal contains equal amounts of energy at wave numbers C w 0 and j fs 100. , .- - -

In the experiment the LF formula was applied with . - -1, h - 1/IO, X - .5, and

the exact iolution was used to provide date at I - k. For these values (1.2.8) predicts n

that the low wave number energy should amve at speed C 1 1, and the high wave

number energy at C e .60. Figures 1.4bc show he computed result at I - 2,4 ()

The initial packet has split into two piees, and they have evidently traveled at the

predicted speeds. (Compare Fig. I of V761.)

More generally, any wave packet that i lecallrd In space must contain a range
of wave numbers. Quantitetively, the product of the width of a wave packet, sad FIG. I.$. )ispersion of a polychromatic puise. The model is LF for

- , m- with A - 1/160,O. h .4. Higher wave combers he lose

the width of its Fourier transform it is bounded from below by a ronstant of order group spresn id lag behind the main sigeal.

unity (the uncertainty principle). In particular, the Initial signal in Fig. 1.4 is nat

21 26

~ ~ . .-. -~ ..-.-.. '-q

.4



exactly dichromatic, hut has a F'ourier transformn consisting or two, narrow spikes. lBut the initial distribution is now

Similarly the signal is Fil . 1.2 has a spectrum consisting of ose nsr spike. In such .(..0)-
casm we must expect tbs. each sot-quite-monochromatic, wave component present

will itself disperse with time, nisce it cotaiss esergy with various group velocities. which is much narrower thas before and has central wave number C=0. Since the

Such dispersion will take the form of a broadesing of the wave packet at a steady pulse is narrow, its transform is brood, and Fig. 1.5b shows that it dispernes qsichly

rate depesding on the range of group speeds presest. We mes formulate this In an into a trais of osillatios.

Approximate way as foliosne Such oscillatory effects of fisite difference schemeas we common sod wall known.

Leg a initial wase packet u(n,0) howe Pennrer trssafowt &((,0) withs upport What is nut generally recognised is that all of the behavior of Fig. 1.5. except tor the

[(a - 4/2, fo + 4(/21 to, some smail het, 4j. L~et W(9) be sne shpp festse e sure phases or Indlividualf wave crests, can be predicted quantitatively by considering group

of the wiadth of the packet si timo t. 71hen for laege t, W will growr resuhlt secrdiag speed. At the frost of the wave train, the low wav numbers travel at speed sndary

to 1, as they must. The further bach one looks, the higher the wave number one awan

W(l) - W(0) as t A( (e)(13)measurements in An enlargement of Fig. 1.5b confirmo that the relationsip Is that of
d( ~(1.2.11). Furthermore, the amplitude distribution can be predicted from the frt that

the initial t2 energy density at each wave number is conserved (It must first be delsied
The sigoificance of (1.3.1) is twofold. First, broadening or&a pulse winibe approximately carefully, since LP is a multilevel scheme; se [Itififl). Accordingly, the amplitude of
linear. Second, the rate of broadening depends on both the width of the Fourier a part of the wave trals with wave somber C decreseas with time According to the
transform ad the derivative dc/df. square root of the rate of disperoion dC/dC. These ideas are made precise sad applied

In Fig. 1.2, there were many grld points Is the ware packet, ao A( was small extensively in the fied sfgoemercsl @pis INb74j.

sond the packet broadened only about '0% or no is the time shown. This eample For Analyses of the dispersion introduced by finite difference models Is the neigh-

illustrates a point of practical importeas, a the absence, of conspicuous dispersion Is no berhood of a discontinuity in a, ws fApU,Ch75,He?5,Cb7ij.

guarantee that a computation has been accurate. In Fig. 1.4 thesa are not A many

grid points within the wave packet, so 4( is large. The component with C An 0 stil

does sot broaden much, beemuse dC/df = 0 at C a 0. But it is evident that the 1.4 Instability ios bp norms, ps IA I
compoenot with (hs = I has broadened considerably. In fact, far this component

(1.3.1) has the approximate form Is thin section no digress briefly te consider our first application of wave propaga-

tion ideas to stabilit,-, We will show that dispersion is the controlling ftutor for

W(I) - W(0) - I(20X i1 0 stability of difference models ofu. - an. in I., norm, ps V112.

Is the last two decades a considerahle body of results has accumulated on stability

This lads to estimates like in i,, norm 11051. Some of the contributors to this work have been Brenner,

llednstrorn, Serdjukova, Stctter, Thomkd, and Wahibin. This theoy is quite technical,
W(O) - 0.2, W(2) - .8, sod des sot draw explicitly on the notloi,. of group velocity or dispersion.* Instead

which are not far off, considering that we have bees careless with cnstants. it is founvded mainly on the techniques of Fourier mualtiplirs. Our con*~ntion is that

DznsolrituTioN 1.4. Figure 1.5 shows the dispersion of an Indtia pulse that is many of these results can be readily understood, and possibly enterded, by simpler

so sare An te be thoroughly polychromatic (c!. (ViIS2i). This experiment taes plus *llowever. C. ledstrom at least (privste comm-nintioul has hesn swaor elt istrpretatise

Ithe am* laboratory As Doe. L.I: a se -I, h 1/160, X- 8.4, scheme s-1L. of 1, instability presnte here.



arguments. We will only sketch oome ideas here without developing them rigorously, Theoeno 1.4.1 1Th651. Log Q approximate is, a u. to an; een ore of

"s this dissertation is mainly concerned with stability for problems containing bound. aresroeg. 7%en Q is visable isL , all op E I 1, -1, p 54 2. 1

sries or %terraces. However, the discussion should suffice to provide support fr out It is this sod related reslts that we claim wee due to dispersion.

underlyti.j thesis: that the stability or finite difference masdels is strongly affected by Here is the explanation. Consider as an initiall distribution a narrow palo., ass

phenomena of dispersive wave propagaon. in Fig. 1.54, whots width is a tow grid points. Following (1.3.1), we write this In the
Let Q denote a fied finite difference ap~proximation to as = as. with time, sod rorm

space steps k sod h, - k/),, ), - roost, We Will apply Q at all poins : E (-00,00o) W10) - h, (1.4.3)

hot at discrete time levels .sk, sod denote the compoted solution at time step st by

."(z). For smplicity we take Q to he a tvso-level formula, and let S denote the with the understanding that "as denotes so order or magnitude agreement, ignoring

solution operator v* con*: rstant factors, without being defined precisely. As a increases, the poine will

disperse Into a train of oscillations (Fig. 1.54), whome width will increse toughly

- I~e)(e).(1.4.1) linearly with s jci. (1.3.1))

For I !S p <00o the Lvnorrsof afuction 9: R - Is ldefineid by W(s) ftW(O) + te,A, (1.4.4)

11-11P MO Lwoldz (1 5 Is <o), (..)Let A(.n) be sme measure of the average amplitude of the wave trals. Then we =epact

10 have
and for p - 00i, Ov(e( u WM 1"1, as A(A)Iw(.n)('. (1.4.5)

snNow if Q is nondissipative, (lswill be approximately conoered not n Increases
The space Lp eonsists of thosse runctios v for which this somber is finite, If S - (exactly. if Q is a two-lervel rormula). With (1.4.3)-(1.4.5), this implies

Lis a bounded operator, the induced operator p-norm is given by

((5(1, en sup 1(Soil, (P : p :5n) A-O) IWiiI sI.()46
34.-I

We definre stasbility is L, as follows, Therefore by (t.4.3)1(1.4.6) we have

Defa. 71it model Q is L,.stal. q! for seoeT > 0 there emistsa constatCy 11011, A (0) LWR(0) (147

li"1PSC For p < 2, the exponent is positive, and so we have growth in the p norm. It follows
that the operator pewevo S- mast grow at least, this fest,

firoalsn ad k s aiss s < T.

For models of hyperholic problem the L, norm is most often used, mainly becauoe

it is naturally connected to the Fourier transform by Piarseval's furmuIl But other sod since is -. oo as k 0 for fined I en nk, this contradicts thr definitios or

IV norms sao come up sometimes, particularly the Lt and L. n-.~ when on. has Lstability. 7%erv/ee Q sto b ~in 1eI, for p < 2.

in mind an extension to a nonlinear problem (Lufih. Oue might expect that noel Thus Lp instability for p < 11ean be explained by the dispersion of narrows spikes

difference, form,,ls that see stable is Lj "ould be stable In other L, norm too. into oscillatory ware trine. Coresondingily, instability for p > 2 is implied by

Hlowever, a result duo to Thom&c shown that this is sot so (se p. Ito of JhiU67I) the fact that so oscillatory wave trals may coalesce into a spike. Suppose that the,
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configuration of Fig. 1.5b is taken as initial data n°(z), and then the LF model of if Q has odd order of accuracy, then dissipation dominates dispersion, and we eannot

(1.1.1) is applied with a = I instead of a = -1. (Alternately, one might retain achieve such growth.

a = -1 but reflect the wave train of Fig. 1.5b about z = 0.) Then at 9 increases the Let us substantiate their claims by estimating the growth rate rot an even-order

wave train will move left, and the lower wave numbers to the right will overtake the formula with a < 0 < o. In the nondissipative ease, we took an initial signal with

higher ones to the lelt, whose group speeds are not quite as large. The result at t = 2 width W(0) n h. The trouble is, the transform or such a signal is so broad that the

will be another spike at z = 0-not identical to that of Fig. 1.5a, bt close. From energy will tend to dissipate faster than it disperses. On the other hand if W(0) is

t = 0 to t = 2, each L. norm with p > 2 will have grown. Now W(O) and W(n) are taken too large, then although the dissipation is small, we will have a wide packet

the same as before exeept reversed, hence 4(0) and A(n) also, and (1.4.7) becomes broadening slowly, and not much growth will take place. Achieving a maximum

growth rate will depend on picking W(0) so as to balance them effsecti W(0) will
In ier I-- (1.4.9) also have to depend on what time step n it is at which we wish to observe growth.

The reason is that the growth due to dispersion is algebraic, while the decay due
This time the exponent is negative ror p > 2, and (1.4.8) beomes to dissipation is exponential; foe 'orge enough u, the simple kind or packet we are

II
5
'I, nh

-
. (t.4.10) considering will decay to 0 in all p norm.

The maximal growth solution is this: given n, design as initial packet as before

Eqs. (1.4.8) and (1.4.10) combine to give the general bound but with

W(0) Ne- lt.SM

I1"11, n
li- 

. (1.4.11) The width of the Fourier transform is then

(Actually, for the above argument to go through we must be a little more careful. A( no h
t

. (1.4.13)

The problem is that the wave train of Fig. Ihb is no at all uniform in amplitude, so If the order of diopersion isao, a packet of this width will kane group nelocities conning

that A(n) cannot be defined in such a way that (1.4.5) holds for all p. The explanation a range (Thin. 1.2.1)

for this comes from (1.3.1) and the discussion in 51.3: our initial spike contains both AC - (hAo)
-  

nZir,

nonsero wave numbers, which broaden and therefore decay in amplitude because

they have dC/d( 6 0, and near-sero ones, which decay very little because they have and so W will increase with s according to

dC/df -o 0. One remedy is to replace Fig. I.a with a signal that looks more like W(s) - W(0) + iAC hno k 
' -
* 

.  
(1.4.14)

the derivative of a spike. The Fourier transform or the proper signal, instead of being

concentrated in a band of width AC at ( = 0, might consist of a band of width A( Eqs. (1.4.12) and (1.4.14) give the ratio of widths

centered at ( = A(. Then the broadening rates of the various energy components, W( ft (1.4.15)

hence their amplitude decay rates too, will agree up to constant factors, and (1.4.5) W{O)

will be valid.) To get the corresponding ratio of apulitudes, we observe that since Q has order of

Now suppose Q is dissipative. Here is the explanation for the eves-order hypoth- dissipation 4, the L2 norm of n will decay according to

esis of Thin. 1.4.1. If Q has even order of accuracy, then its model equation has InVl12 (I - )AA,)
1

)" no

a < P (11.I), and this means that dispersion is stronger than dissipation at low wave

numbers. fly considering a spike as before composed or energy with sufficiently low or by (1.4.13),

wave numbers, we can again get growth in all L, norms, p $ 2. On the other hand Ie1ll no e
- 

no I.
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In other words, our initial packet is just broad enough so that the decoy up to step The fact that our estimate was sharp suggests that not only does the dispersion mad

nIs not significant. (The Width (1.4.12) was chouen to he the smnallest, pussible fr gathering of spikes imply instability tn Lv norms, but ther" is nothing morm to such

which this would hold.) Therefore as in (1.4.6) we have by (1.4.16), instability than this.

i-i Much of the early resach leading to Then. 1.4.2 was concerned with growth
W(.s) lo sr (..6ates n I s ore the Ls-Wwodroff operator, Q -LW. For thin we have a - 3,0

A(C) IW(O)j
From this follows the analog of (1.4.7), 4,p nou, and (1.4.10) becomest

or folowig (1..8),(Obviously the Instability Is very weak.) This bound was Beast established by Serdju-

li~e ,s~W{~').(1.4.17) kova fSellS), by means of oaddle-polnt estimates, and independently by l4.dstramn

For s <2 th exonet isagan psitie. hwefre isumt~ inI, ar l < .1telil) In 19116; see also (Stilli, (TbM), "IeW.

Aor p eoe rerin the prpoest isaan guiive the name esQtimat albutwiss the fexpone2. The theory related to instability in 1, has bees carried well beyond Then. 1.4.2.

nega efr, reverying th I . frco gie >.Algthe r wesiae hute the nnd* In particular one may ask, how rapidly can 1)001), grow it n atiles some smnoothneess

negaedimplinggroth I I. fo p> . M toethe, w hae th bond
0

condlition? How smooth most so be to make growth impoesibit' The aswemn to mach

)S~, ,,'nlI-l. (1..16)questions naturally involve Beo, owaes [PeTB!, and a large number oam presented in

(Bell); wee also Pielll. Although many, of them could prohably be given dispernion
This agrees with the nondiesipative result (1.4.11) if one ats 0 - co. interpretations, we do notazgue that this would necessarily be productive in the more

The shoot argumenta constitute a sketch of a proof of Then. 1.4.1. complicated cases.
In addition, we have obtained a lower bound for the growth rate of the difference A mere promising application of the dispersion Idea may Involve the extesin

operator. What in remarkable is that this bound is as strong -n possible. The following to serials coefficients. We have not discussed this fact, but the sestlals of promp
result was proved by Brunner, Theende, and Wahlbin: velocity extend without change to dispersive system with variable coefficie nts

Theorem 1.4.2 IBMt, Thes.SSt. Let Q he a cenasalees* difference a,. long a the scale of variation is large compared to the wavelength* of interest [Wlal41.

peesimatsio. tos.a - am. with ese orde, of actrr. If Q is dissipative, the powers Thterore we propose:

of eke slaiv, *WOWts S sneigh Is, 1 5 Is < us a homnd Conjecture. Therem 1.4.1 constinees toheld if Q is a ceosslosi~ Asft"-c

< iS1 0  M,%I*(.41)model of

ma -0(z)5,.,

l ssms conans Ad, ead A41. Qis namidisaiplei (P 00u) "j redacesto tshae

formulawhere a(s) i.ea Lipachits coninuous. functlion satisfyint 0 < a.. : la(r)) for ailsa.

M~nh~* ~ IS'IP M~~l(. *(1.4.20) A straightforward extension of the estimate (1.4.19) is probably also valid. At present

*As application of the uniform bsudsdees principle shoen, that not only does So grow at no such resulto appear to have been proved, although some thmrems for variable
thes rate a on - us. hut an dams v" far seine sitably cosen Initial data 90. Is fast It 1s coefficients appear in [ApOB). To apply Fourier methods, one would most lihely need
net hard to devise math a Inon 90: lt it cosist or a seriks or spikes, each broader ad to move from Fourier multiplier techniques to those of psaedaffrclial oprators.

ace estees. dec eip 1 hi-mxmmgot .p atclrUn Technically thin would be intricate, and there is a chance that the resulting theorems
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weiel require art unre;.aonable degree or smoothness in a. We suspect that a proof

by arguments based on dispersion would be easier to carry out.

For some very inttresting results on stability in 1, norm or nonlinear difference £

formulas. see the recent dissertation by B. Luoier 1luSt i . (h) f0

1.5 Plaasitc wai s h o r hr o en

The last three sections bane concentrated on the errors tat result from the (b)=

deviation front linearity of a numerical dispersion relation near the origin wo = ( = 0. a

These might be called the behanioral errora introduced by differenciog. However, a .

finite difference grid can also support completely nonphysical or pauritice waves,

with fh or wk far from the origin, and these too will propagate at the group speed ,siC

(1.2-3). In general parasitic wanes may travel not only at the wrong speed, but also e( - ".W.J)r rh =

in the wonrg direction. This can be seen from the fact that in Fig 1.1 (also Appendix ,'

A), the dispersion curves have negative slope in various regions. In Chapter 4 we will

see that energy propagation in the wrong direction is closely related to instability for

initial boundary vlue problem.. (d)

It is perhaps surprising that poorly resolved waves should obey a group speed,

since the discreteness or the grid might seem to necessitate a more complicated "

analyus. However, the stationary phase ar,umelt sketched in 11.2 only required- '

4(t. 0) to be smooth fuiction or c snd Its. nothing to do with the discreteness or . s .ill.
De.MONSTRATION 1.5 To illustrate, Fig. 1.8 show. the propagation of five )e) e il= Ch

different ware packets. In this esperirncnt . .= -u, with a = -1 wa modeled L j

on 1-I 5, 1.51 by CN with X = 1, h = 1/100. In each case initial data consisted of a us --

wave packet

.O(z) = e-(lO,) cos C,

with varying values of C. In each ca.se the solution was computed up to I = , 1.6 Physical and parasitic .use packets with Ch 0,./4.
eIn -l experiiteiret the itlial packet -su locnLeld at z = 0 and the

and thei, the reseelt wast plotted. From (1.1.18) and (1.2.7), one readily obtains Lte filure slowa the result at t = I, so that thb position of each packet

prediction plotted eluals the group velocity for the corresponding wave number.

c cos(h 
The model is CN r for -u. with h 1/100, 1.

I + i $in' f h

for this demonstration, Table 1.1 shows the wave numbers used and the corrsponding

group speed predietions:
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Figure Ch .C

I.6b -/4 .629

ii be Tn o 1.1 =0)

I.Sd 3e/4 - .629

1.s _.

The figure shows clearly that the predictions or this table are valid. AA LA

DEMONSTRATION I.6. Figure 1.7 shov the similarity between physical waves I) nA = .1

and parasites in another way. In addition to the spatially sawtoothed waves that we

have already seen, which arise from near ((,w) = (a/h.O), Figs. l.la-c imply that

signals with ((,wa) near (flubk) and (r/h,e/h) are also possible under LF or LF4. Ni"^ _1
Fig. 1.7 confirms this for the sheme LF with a = -1. In the same mesh as before, s

sinusoidal forcing functions with wk = 0,0.I,w have now been turned on at t = 0 in (cJ s"jk = r

the middle of the domain:

(Ita) e; - 1,

(17h) = sin(.ti),

(1.7c) ;.0 FIG. 1.7. Sawtoothed parasites generated by a forced oscillation
sinwi at the middle or an interval, rot various frequencies w. In each

Each plot shows the resulting distribution at time 1 - .6. This is an artificial case therorcing function wasturned on at I = oand the result is plotted

experiment, since it amounts to specifying data on the outflow boundary of the interval at f = .66. The model is LF for su, = -u. with h = 1/100, X = .5.

(-I , 01, but it highlights the completely predictible behavior of parasites In Figs. 1.7a

and 1.7h one sees waves of type (s/Ag0) and (0,0) on the left and right, respectively.

In Fig. 1.7 the waves have become or type (0, o/k) cnd (s/h, w/k), although to display

the sawtooth behavior in t it would be necessary to show an additional plot for I =

.6 + k. All or these waves travel at group speeds appoximately :I. The remarkable

v-symmetry in each plot is due to the (-symmetry about C = a/2h of Fig. I.a, and

the Isymmetry relating Figs. 1.7a and 1Tc is due to the corresponding no-symmetry. a unique value. The difficulty (regarding wk) is that since the wave is only observable

These details are unimportant, for they would change with the difference scheme. at discrete time intervals, it cannot be said whether a sine wave has moved left or

What is important is that smooth behavior in either r or I is no guarantee or smooth right to get from one configuration to the next. lut whatever phase speed one selects

behavior in the other variable, and that even extremely unphysical waves obey a group will fail to capture the basic fact of the speed at which the edge of the parasite moves.

speed, which may have the wrong sign. The group speed, by contrast, is well defined, because dn/d( has the same value for

In problems involving parasitic waves the notion of phase speed is not just all choices or w and f.

inadequate, but ill-defined. According to It 2.1) the phase speed is e = w /(, but The above exaviples have suggested that it is common for sawoothed waves

since wk and (A are only determined up to multiples of e, this formula does not give to propyrngte under nondissipative difference formulas in the wrong direction. It is
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convenient to devise a name for this property: Conolotency imnplics

Defas. Let Q be a scalar difrenr formula. Suppose that wheoever Q admits C(O,a ) - a - (1.5.2)

a solution v7 = c- with w, C Il aod group speed C E IR, then it also admits the
souto vihan hswv a ru pedC Rstsyn C ,bt it implies nothing ahout the tvoup velocity far a spatial sawtooth,

with c' ,t 06 if c 76 0. Then Q is c-reeeing. Lihewise if the existenee of a solution

r, = c- wit I and group speed C implies the exstence of a solotion 17Ce i)=- (t', 153
1-)"e-0~ with CC' ! 0, mith C' #40 if C #60, then Q is 1-reveeaissg. / hsfo xmi oml

One may show readily for the aeheves me hove considered (see also App. A);:I X
oa,, -,+s-'.

Theroem 1.5.1. 3,~ ~ -n., ~j(~ ;s

(t) LF and LE4 aee both n-reneriag ansd tenersisg, has at ofa
3

, a2s of
3
, hence C(x/h,Q) =-a/3 < 0 so met, as C(0,0) o--a < 0.

(i) BE snd CN see n-reneeo~eag bat not t-eeraiap, But there mill also he values Cin (0, n/h) with C of the opposite sign. Usually, for

(iii) LUd to I-reversing but not zcenersing, each frequency there mill he o&n many move numbers with C < 0 as with C > 0. Thus

(i.) LW is neither cresetroin sa t-. eecirg. it is in the nature of nondissipative formulas to reverse some wavs. to fact onlya

Peroof. Let us prove (ii) for the scheme CN. Suppose vr = e-' satisfies CN with onv~ided formula can fail to send some energy in the wrong direction, ad such a

w' E lIR. Then v has 0 hy definition, no (lto.1) implies tan wA = 0, henve wS = 0, formula is usually eith~er unstatle or dissipative. (However the Bon seheme, likted is

and by (1.2.7) the solution has C =o -a E II. The dispersion relation (t.1t1) implies App. A, gives on example of a or-sided, nondissiputive, not c-reoersing formals.)

that s''- = (-I)) is asn a svlutiov, with (h = vr, and by (!.2.7) this solution has I. practise, a nodisoiputive difference approximation tooa first-order derivatine

C' = +a E It, yielding CC' = _a2 < 0. Therefore CN is c-resersing. On the other will often be taken "s the optimal formulo for the given number of points. For the

hand v,"o t_ satisfies (1.1t1) bat er = (-t)" (i.e. Eli = 0, wkb = x) dam not, so CN centered stencil of sian 2t + 1, this formula has order 21. (For examople, LF tAd LF4

isnsot t-reversing. arc basedl on x-dilffree approximation% with t = I and t = 2, respectively.) Is this

For the other assertions the prast is similar. I important zoane, all formulas are reversing:

Not every nondiasipative difference formula is z.ceveraing. One way to see this Thseorem 1.5.2. Let Q he a difference model of (1.1.7) sho., patWa (reap.

is to observe that a centered spatial difference operator temporal) diseeticstion esnoists of the optimal 2e +4 I2-point centeed differesse ap.

8 or(K' - K'-), peoimoolion ts witf&n (resp. 0118l). Then Q is c-reneraing (reap. t-reeeris).
ak2h(1.5.1) Proof. The optimal aproximation in question can be given mexatly ([Kr721,

where K denotes the shift operator Kn, = v,e1, leads to a spatial factorReakp20)inteoain(15)oe s

.1 = 2a(- 1), t (_ j)

Bly (1.5.3) arnd the alternating signs of these coefficients, itin immediate that oe bas

in the dispersion relation. A difference formula based on this spatial diseretisatiott C(sfh,0)/s > 0, and since C(0,0)f a < 0, the assertion is proved.I

will havet

-M 0) a oih As nentioned above, Chapter 4 will show that the stahility ofta dilteresee, model

j-of an initial boundaury value prohlcm depends o, whbether the model can evpoet wavvs
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with group velocity opposite to the physically correct direction. It. practice, numeri- where V, denotes the gradient (d-voctor) with respect to ~
cally unstable solutions often consist of sawtoothed waves under x- or I-reversing For simplicity, let us confine ourselves to two dimensions, and write fCq oer~

formulas, tofat that we will pursue in 14.4 sod 54.5. Consider the (isotropic) accond-oeder weane equation

si. Z %se + see (1.5.4)

1.6 Wave propagation in soea liein The dispersion relation toe (1.6.4) is a system or coscestic circles,

Mathematically, linear wave propagation in several dimensions is much the sass. W2-f + n".65
s in one, fot the different space dimensions decouple. Neverthelels, the combination

of these one-dlimensional effects introduces geometrical phenomena that ae surprising. which has two rrequencies tsr each wave number because (1.6.4) is of send order.
In particular, difference schemes for isotropic equations ace themselves anisotropic, From (1.6.3) one obtains a group velocity
and s a result impertectly resolved wanes travel not only at false speeds but is faise

directions. Such elfeets have receied little treatment in the literature, but there in C = teICI,
somepreiou stdie, prtiulaly y gephyicits AI7R.M &%l s~j* Tarewhich smserta that energy travels normal to the wane tront at speed 1. As a typical

is also a great deal known shout wave propagation in crystal lattices, which In strongly finite difference model ot (1.6.4), suppose we definesa rectilinear grid with step sn
analogous to prepagation in finite difference grids, and there the same anisotropy in both a and V, and consider second-ardoir leap frog (LF'):
phenomena appear. For references see fsr example (Au73,Bo54,llrS3,Je37,SoG4j.

In d dimensiops, Fourier modes tabe the form n'+
t
-2 + an

1
b[ ,1 ,+. 1  +,.+n?. -4ej (16)

(1.6.1) (The restriction of this tormula to one dimension is included in the soumary of

wheretw is still a scalar frequency and (in now a wave number vector or dimension Appendix A.) Easy trigonometric manipulations then yield the numerical dispesmon

d. From (1.6.1) one may define the vector phase velocity e componeotwise by relation (cr. [A]741, eq. (A2))

!5 toij (l d). (1.6.2) sins~ = In., ~(.6
2 2 2j

The phuoe velocity points normal to the wave front, but bus little physical significance.

Once &gain, a stationary phase argument (Vh6Il,Wh74j can be sed to show that From a contour plot of (116,7), one can see the errors in group velocity that LF'

energy travels at a groop velocity, now given by will give rie to (cf. (Au731, [Je37, chap. 151). Fig. 1.8 shows curves ot costant wo in
f- spare toe oh = I/SIlx/8. For uimplicity X~ bas been taken here equal tso0, so

C = V6t., (..)that LF
1 

is reduced to a sem-discrete or 'method of lines" approximation. The full

'Iu geospicsn one faces the inveru problem of inferring the properties ot the earth from domatin portrayed in (4, 17) E (-v/h, n/h
5 

(in crystal terminology, the first 9618"em
observations or sound propagation threugh it. On a global scale, the sound sources senv zune); any other wove number vector is an alia ot a vector in this region. The figure
earthquakes or nuclear explosions, and the goal as to understand the lange-ca structure of shows that as to increases, the corve of corresponding ( vector becomes lees lbs
the earth's surface or interior. On a scale of a few miles, the sound soesucdynamite
capleoso- - other m-.a.ipus, and the goal in to deet inoegwimeof moond a circle and morn lke a diamond. Now J1.6.3) implies that the group velocity fee
speed tbut may gives clues to the location or oil or other resouece. Is theme problems soy wave number C points in the direction of the norml to the lise of constaat wo
finite difference models aee used extensively )flnjn,C171M.81(. The &M.d employed are sites hog .B otattepaevlctsnei snra otewv rnle
cours relative to the wavelengths present, so nmerical group velocity erroe are potentially truhC l otattepto eoty ic ti oea otewv rnle
significant. along the ray from the origin through (, und so would tlhr ideal group velocity far
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(1-6-4). Thus Fig. 1.8 indicates Lhat poorly resolved wave pockets will travel more 19 tn(s in nkh\
along a diagonal under LF

2 
than they ought to. The figure also shows an increasing snh

separation between curves of costilant w as. wIncreases. By (1.6.3) this indicates that 1C1 -XVZOTith l~i
poorly resolved packets will travel too slowly, as in the one-dimensional case, and Si sirk(160
evidently ti,' eitect will he more pronounced at 01 or 0' than at 451. For infinitesimal'th these expressions reduce to the isotropic sad sondiapersive for-.

Applying (1.6.3) to (1.6.7) recapitulates these phenomena algebraically (cr. (A1741). mulas
One obtains the group velocity components [tCta.'- 1C=,

x do C e Si 9 1.. but foe finite Ch they confirm that there is isotropy and dispersion. Jot demant

the angle from the I, axis or the normal to a gives plane wave Thean to seesod order
Therefore the group propagation angle (from the x axis) and speed for the wave a a
number vector (~,)are IC t so 041ih),[3 + 549- '] (.611

24
Eq. (I.6.12) shown again that waves will travel more slowly than the correct speed 1.
lagging twice as much (for smail X) at# an 0(med 90*) mat#i - 4S (mod W). Eq.
(1.6.13) confirms that waves with * a r(mod 45e) will propagate perpendicularly to

the wave front (a fact obvrious from the symmetries of the grid), hut that all other
waves will propagate obliquely, preferring diagonals to horizontal& and verticals. The
details would change if the z and p mesh spacings were not equal.

ftmoNSTRATION 1.7. Fig. 1.9 confirms these predictions emperimentally. Here

a Gaussian ware pucke. s 0=snZ

with # = 22.5* and If(h - 1.6 has been set up at t = 0. The experiment takes
h. = .01, X = .4, scheme = LF'. Superimposed on the same plot in the packet at the

later time 9 = 1.4. Ideally it should have traveled a distance 1.4 at an aogle 22.54.
In fact, it has closely matchved the predictions of (1.6.9) and (1.6.10): e =30r

ICI = .81.
In realistic problems, coefficients will usually vary in space. Following a standard

FIG. 1.S. Dispersion plot for the two-diuvensionual Leap Frog model theory of ray tracing in inhomogeneoun anisotrnpic media JUiTS], it is possible to
of ujs = u_. + u,, in the limit X~ - 0. The region shown is the domain work out in detail what kind of errors dincectination will introduce. Now one has a
1-w/h, a/hl' of the j = (f, q) plane. The concentric curves plotted are
tones of constant w, for w.h =a w/8, 2%/8,.. In/S. Ther normal to the space~depcndent dispersion relation
crvme psing th~rough a point C is the dire~ction of the correnponding
group velocity. w .(.C
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and the group vdlccity formula (1.6.3) becoines half of a system of equations in

Hamrilton ian form,

V, -- . .(163)2.0
all di

In the special case of a stratified mediunm, in which the spatial dependence involves

one dimension only, one can simplify thin nystem by replacing the second equation by

an algebraic formula (= f(s) derived from tUm numericall dispersion relation, and

thin in a numerical form of SneW.' Law. Foe an example, sere (ThS12). Some further .

remarks on Snell's Lam are given at the end of 13.6.

One might go further, and stndy move propagation in nonline ar models by meauns

of the fairly well developed theory of nonlinear mave propagation iii dispersive media

[Wh741. However, me mill not pursue this here. 1.0

0.5 ~

0.0 0.5 1 1.5 2

FIG. 1.9. propagation of a two-dlimensional wave packet with I)h -

1.6, 0- 22.5*. The model is the Leap Frog scheme for V. - ase + an
with hn = 1/100, X an .4. The packet is shown at both I ae 0 (lower
left) and I = 1.4 (upper right). Dota mark the ideal starting nd eneding
positions, and the square the position predicted by(.6)-lB0.
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Kcs = ci , 2., -nn

Let an define complex numbers xn by

2. LEP'TCOINC AND IGHTGOING SIGNALS Then the Fourier mode (1.1.4) takers the form
= . , - ( = t, si ), 2.1.2)

2.1 The general seata" difference formula and it is ax eigenfunction of K and Z with eigenvlues c, z. The can in which

The purpose of this chapter is to make the results presented so far more general or w is real corresponds to the situation Ibc - I or 1.1 - 1. respectively. In this

and more rigorous. The key to this is an algebraic study of the dispersion relation for disertation we wilt use (,u or cz, or both, according to convenience. This use of

an arbitrary scalar difference formula Q-two-level or multilevel, explicit or implicit. i and rollo" the stability work or Kreims and colleagues )Cu72,etc., and we bane

For a complete analyss one must permit w and C to be complex, and one must examine introduced K and Z by analogy. The remaining ideas of this ectia are als heavily

thy defentive solutions that occur when s or C hs multiplicity greater than I. In influenced by those or [Gn?2).

this first section we will define Q and describe the solutions it ndmits with regular A general a + 2-level finite difference model Q of (1.1.1) with ronstant coefficients

behavior ir x and t (Thins. 2.1.l,2.1.2). Section 2.2 details the relationships of wave ran be written

number and frequency to -dwsipativslp, t-diaipnlivd, and Cauchy stablnity. Section Q-,.-., Q..---. (2..)
.- 0

2 3 then sets forth our most important foundational material for Chapters 3-6. First, where each Q. is spatial difference operator,

Thin 2.3.1 proves that if Q is Cauchy stable, then the dispersion relation is analytic

about any point with fuwE IS, and there exists a real group velocity. Second, The. Q. s <

2.3.2 describes the connection between wavelike mode, with us, C E IS, and evanescent ,.-n

modeo, with w or ( complex. These results form the basis or definitions of righgoin We aume that Q-1 has a bounded inverse in t. If Q, I. (2.1.3) is mpis;
arid leflroing, otriefty, rightgoing and striiify litfig, and stationaryl solutions to Q,arid lclqnioqstrictl r~qhlniog an utriclp lcftgmg, an oothernwissoltions iotherwse.itei implict.hWe esame ktat 5. =k/hdis ixedhad tthat heocoellcient

which will be central to our later work on boundaries, interraces, and stability. Section
A. depend on X, but not on h and k independently. The integers t > 0 sad r > 0

2.4 then goon nn to apply these resnlteq to the elsa of lheee.pnint hene mullulep deflne how far left and right the stencil intends.

formulas, and Section 2.5 extends them to diagonaliable vertor difference models.

Carrying the shift operator notation further, we can write Q Is the fres
We begin by introdclucing space and time shift operators:

Defo. The shift operators K and Z are defined by' P(K -- Zn = c

-To avoid sbun of notation, we would have to be conslstent As to whether v is a doubly where P is a bivariate polynomial of degree I + r with respect to K and degree a + I

indexed sequence, a time sequenee of space sequences (v,), or a space squence of tLime with respect to Z. The dispersion relation for Q is then simply
wquences (v"),. lnfortunately any such fixed choice is too cumbersome to he practical, and
or will Apply K freely to any object that has a spatial index, and Z to any object with
time idex. I(..) = 0. (2.1.6)

4 qI4
A

I II I I I I I II I III I II I I I I II I -- - I



In this notwtion LF takes he form Separable schemes have the property that their group velocitics factor into a

product
[K(Z

2 
- 1) - XaZ(K' - 1)j = 0, C(-,,4) = C,(M)C(. (2.1.14)

or equivalently, We have obeerved this for particular exa nples in (1.2.5), (1.2.7), and (1.2.8). The

[(Z - Z-') - Xa(K - K-')]s = 0, (217) resaon for the frctorization in general is that if Q is separable, its dispersion reLatiou

and its dispersion relation (1.1.7) becomes can be written
fl.*-*) = (-€)

a ((2..) Differentlation gns

Similarly LW has the shift operator form skewf(eaW.. e

[ZK - K - "(K2 - I)(- {K - 2K + 1)]. h,
2 2ad hence by (1.2.3),

T -21 Tth-at sK-K-__ - (2 + K-I)]n 0. (2..) C = =-(e'(w) -(f(-').

In these instances the space and time parts of the difference formula are inde- We will be extensively concerned with the relation between is and z imposed by

pendent. We define in general the dispersion relation (2.1.6). To begin with, suppose that x is fixed. We ask the

Detn. The formula Q is separable if it can be written in the form question: what solutions sf the form

[1(Z) - g(K)ln = 0, (2.1.10) .; = a'., (2.L.1)

where f and I are rational functions. // where (,) is a sequence in n, does Q support? By (2.1.5), (2.1.15) is a solution of

LF, lW, and many other difference formulas uxed in practice are separable. For Qv = c if and only if

example, CN can be written P(n,2). = 0. (2.1.16)

- X4 (K -IIK)], = This is an ordinary difference equation roe 0', and the solutions to such equatios

-T 0, (2.1.11) are well known:

and LF4 has the form Theorem 2.1.1. Let x El be arbitrary, and sasume that the polynomW

- - - I/K) + - -(K' - -') V = 0. (2.1.12) P.(,) = I(n..)

Any difference formula based on the method of lines, in which the z discretisatlon is of exact deree s+ l, i.e. the oeff e,.nt of the ** I term t nonzero. Let ( ,)j .

is carried out before the t discretination, will also be separable. An example of a denote its distinct roots, nith ; of multiplicity v,, hence Y,-. v, s + 1. Then the

nonneparable scheme is l.Fd (11.1), which has the shift operator form 8 + I sequences

Z- I 1Z - )is(K - I/K)- ' 8 2(K - 1)'(1 - I/K)2~ 0. (2.1.13) ,=n l< ts 0 6 c- (..7

9 
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are linearly1 indepndent solutions of (1.16), and they opera the lincer space of al" 2.2 Causchy stability said dinoipritieity

such solutions. We will he concernedl only with difference formulas lint are 1n-steble in the
Proof. 10r721, §4.2. 1absence or boundarieo or interraces. The tollowing definition is the name as the

Rte,,ark. By assumption Q-1i in invertible in Is, from which it rollovis that toe definition of 14 stability in 11.4, except that L, is replaced by 1: noid we now Caver

JKJ = I (and hence, by continuity, toe lal sufficiently clone to 1), the ssnumptin of the cane of multileel formula.

meetdegee + mut hld.Deffm. Q in Cauchy7 stable irftoe each T > 0, there exiista a constant C,. > 0
Now let no switch the roles or x and z, and noppose z In fixed. Coresponding to such that

(2.1.15), we may ash, what nolutinons 1b1-hb2 5 C,. 1l1n

V,21.3 for all st and k satisfying nh < T, where 11 - 11 denoten the norm defined by

where (#,)} in a seqnence in j, does Q support? For this one han Correnponding to 110111 =s h ]*,1'. (2.2.1)

(2 1.IS) Inc equation o

P(K, z)#, = 0. (211)The reoults of the lant section lead to necessary conditins foe Cauchy Lahility. Heft

which in called the rsnolent equation foe Q ([Cu721, eq. (4.1)). Again we hane an and in later sections, when we speak of connections between a and a, it nhould he

ordinary difference equatin whooe solution tan he characterized completely: -undeestood that we are eoncerned only with paien (as) that natinty the dispersion

Theorem 2.1.2. Let z E C? be arbitraey, and ssame that the poilpesannust eelation (2.1.6).

Defo. The model Q satinfica the von Nesssn Condition it Jal = I impies

is0 *exact deree 1+r. Let {a,)ntSS denote its distinct ro, withsa of .nattiplicily Theoem 2.2.1. A necessary eondition for Canchystuability is that Q satis.Jtes

s,, hence f 1 n,+ . 7Ten the I+ ,seirrestea the non Neumnann condition. A rther necessary cnndition is that (a) - jz) = I

inplies that . is sirnple.-

- i 1~ ! 5 i is, 0 5 6 C: i. - 1 (2.1.20) Proof. It the non Neumann condition date not hold, then by Thin. 2.1.1, Q

see linearly sodeondent solutions of (..),and they opan the lineaor space of oil admits a solution

MCAe Mnatisse. irs - o " n >O

Proof. game s tor Thin. 2.1.1. 1with a)j - I and Isl > I. It the simple root condition does not hoid, the manire

Thin theorem, which we will use more often than Then. 2.1.1, provides a comnplete hoe hw hto disaslto

hreakdown of all solutions with regulae time behavior that Q can spport. In labe v, so star *, t n 0

sections the analysis usually Comes down to determining which combinations of thmwihxl-x 1Itfloshainehrcuetenhpwrsrteam aain
solutions am permitted by pacrtienlar Choices of boundary or Interface conditions. mtie orsodn oteFuirmd ihc'h=Rgo nonel e

n1n tont In the present cnnnant-nellienct sittnation, the Cndition. given arm also sulfidnent
ton Ltbility, lion we ill net need this malsit.
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4

n, for finxed k Therefore L 1 also grow unboundeily so k 0 rr fixed T. Since ansd t-daionitee.

such amplification matrices are continuous functions or (, Cauchy instability follows Proo"f. Both total disaipativity and o-disaipativity require the eon Neumann

by Fourier analysis (se §5 4 or h~iS?)). g condition, so that part of the equivalence holds. What remains is to show that Is§

The definition of dissipativity is a further strengthening or the non Neumann I1 = i -i z = a = I is equivalent to Il = Im1 = I - ic = I plus a = I. ,l =

condition: I so r =- , This is immediate. I

Denis. Q is dissipative or c-disipative ir it satisfies toe von Neumann condi- The example of LFd showed that o-dissipstivity does not imply t-dissipatinity.

tion, and moreover. tI = I. n A I implies Isl < I. or equivalently, Imn = Isl = I However, foe two-level schemes one has

implies c = I. It is strictly noandissipative or unitary if iei = I impliesl Jxj = . Theorem 2.2.3. Any eonistent two-kieel Prensts Q is l-dianiatlie. Aay

// onsstent two-level .- disipstive formula Q is totally dissipstive.

Note that strict nondissipativity is a stronger condition than the negative or din- Proof. By consistency, Q must have a solution a = z = 1. and if it is a two-levd

sipativity. Most formulas ae one or the other, but an example or one that rails rormula, then by Thm. 2.1.1 there can only be a single a for each x, so this is the

between is BE (jit). For tot = 1, c 9 ±, BE has ls < I, but the mode s, = -1, only solution with x = I. Therefore the conditiop or t-disoipaivity holds trivially. If

z = I keeps it from being r-dissipative. Q is also c-disuipative, then it is totally disoipatire by Thm. 2.2.2. 1

In practice, what one often needs is a slightly stronger property: One readily sees that dissipativity precludes the possibility that a scheme is

Detsn. Q is totally dissipative if it satisfies the von Neumann condition and reversing:

moreover, 1.1 = ta. = I implies X = 8 = 1. // Theorem 2.2.4. IfQ u cnistent and c-dlsiptive, it cannot he o-reersg.

For two-level schemen (. = 0), we will show in a moment that u-dissipativity and If Q i connistent and I-dissiputee, it cannot in l-reeeraing.

total disipativity are equivalent. An - - .'c ,ulfices to show that roe multilevel Proof. If Q is consistent, then a = a = I is a solution with C = -w E B.

schemsu the situation is different: l.Fd (§1.1) ,o. isoiputive, hut it admit. the mode For Q to be c-reversing, it must therefore admit the solution u = -I, z = 1. This

= I. z = -1, so it is not totally dissipative. 'h -fact that o-dissipativity does not contradicts the definition or an o-dissipative formula. Similarly for the t case.

ensure total disoipativity for multilevel schemes canvs oceaslonal confusion and error For a scalar difference model with constant coeffiients, dissipativity almost com-

in pupers on finite difference methods, which is why we choose to add the prefix c. pletely determines the behavior and stability or solutions to the Cauchy problem in

In analogy, one might define a t-diss:patioe formula to be one Fur which jlt the e2 or L2 norms In the two-level casc. its influence is complete. Euch Fourier

1:1 = I implies z = 1 For generality in later applications (see especially §6.2), we component x will lose L, energy at the rate :,(tr. and by Parseval's formula, the

choose to make the definition slightly weaker- the minimum ncescsry so that z- and overall solution will decay according to the combination of these effects. One might

- dissiptivity together imply total diinipativity. The following definition is closely my that dissipation act on individual wave numbers independently, and the L orm

related to condition (3.7) *,1 the paper [GoRIJ by Coldberg and Tadmor, and to the ie.icaure thes independently. For problems with variable coeofbcdeneg, two importat

notion or tangenstial dissapolnuty, introduced by Coughran in lCoS,. theorens of Kreiso IRi7,§16 show that dicipativity still goes a long way towards

Defin. [)ofll, eq. (3.7)). Q is I-dissipative ir s = I, Is) = I implies z I. ensuring L2.stability.

Dispersion, on the other hond, hau to do with the interaction of wave numbers,
Thus. ror example, BE is 1-disipative but not c-dissipative, nod tme results or 51.4 show that this interaction must he taken into amcount for

Theorem 2.2.2. Q is totally dissipative i/and only if it s both z-dns ipative stabtility in 1, norns Othcer th:mn &I. We will soc that the sanice is true, even the in L,
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tort. for probemn containing b-ondaries or interfaces. fly 12.3.2), '(o, z) = 0 if n1l only if > 2. which proes (wJ.

Assume on the other hand v' = I, an that .'(o) # 0. and (2.3.2) a., (2.3.4) give

2.3 Leftkgoing asd rightgoing solutionsa C(io, a) -A . (2.3 5)
bas

IVe now have the material in place to return to group velocity nd give it a fuller Figure 2.1 indicates the situation--the function z(x) maps a neighborhood or f.

explanation. First, the following theorem establishes that "group veocity always conormully onto a neighborhood or a.

makes sense" -for any wavelike mode, the derivative (1.2.3) emists ad in real.

Theosremn 2.3.1. ,el Q be a Cauchy Olne scalar differmnd forulao wth raw- 'r, ed/

sant coefficment., a.described es 12.1. Suppose that Q adms a solution -0s=

a "4 = e
' '  (o = jh, 1= fink) 1o3n1 - "

sth IZol = 1o1 = 1, Le. wae E JR. Then (o) FIG.

(i) In a neighborhood af (Ko, so), a is a snrilevalued analytic fauctio af a.

(i) rhe group sltl diern-ie C = di/d exit. at (.0, a), nd 'n reaL

(n.) C.,, o) = 0 if and only if en is multiple (i.e. d euslli roo o the

poyseilP.u(.) = P(. o) af 12. 1).

Peoof. If Q odmits the solution (2.3.1), then P(O,zO) = 0, where P is the

hiaria.t polynomial defined in (2.1.5). By the remark following Tir. 2.1.1, the

univariate polynomial P.(.) = PK,z) ha exact degree a + I tor all aina neighbor- For Cauchy stability the von Neumann condition must be satisfied, which meana that

hood of x = co, and by the definition of P, lta coefficients are analytic functions or z(n) must map I1 = I into jai S 1. Obviously, this can only happen if a(.) maps the

x (in tat polynomisn). Moreover since Q is Cauchy stable, Thm. 2.2.1 implies that -,-tgent to (Ix = I at Ko onto a curve that is tangent to jai = I at o, ao indicated in

zo is a simple root or P..(z). From these faets it follows by the implicit runction i.e Figure. This tangency condition is the same as the condition that the eight hand

theorem that in a neighborhood of (KO, o), the equation P(a, x) = 0 determines a sde or (2.3.4) is real. This completes the p.of or (ii). a

unique analytic runction a(s), satistying The significance of this theorem is that it applies to nll wavelike slutions,

(s - on) = A(. - 0)' + O(( - A0)0 ) A d 0, (2.3.2) including those involving detective rooto x and those admitted by tormulas tlat are

for some A E I , where.. > I is the multiplicity ot no o a root o Pss(i) = P(, so). z- or t-disnipative. For example, BE admits the wave (-I)y and LFd admit. the

wave (-I)", as mentioned in 11.4, but most solutions with )s( - I under thesThis pnoves (.
LBy differentiating (2.1.1), one obtsi the rorrula tormulan have I(l < 1. Thin. 2.3.1 shows that nevertheless, than waves have wall

defined group velocities. (For another example, see the Laa-Friedrichs scheme listed
do - -ihadi, do a ikiza. (2.3.3) in App. A.) Though we will not give any details until Appendix B, the sta.ionary

Since we have shown that doldm exisla at (i4, o), it rallaws that C(ag, so) exists and phase argument of J1.2 or other related arguments enierm that these group velocities

is given by the rrmula correctly describe the propagation or energy in these modes.

C( a dj Iso as (24.4) What Thin. 2.3.1 does not do is assign a groupjpeed to signals with jz( # I or

Is- hd,1 Ja) 3A I. We will naw show that ror ]l I and (a) j 1, there isn speed of translation
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t" natually associated with a signal zaa'. and thin spced approaches C in the limit way tc nake this motion quantitative wnould be to merisore the increase in the total

ci1 1 1, 11 1I 
t
j energy to thc right of a fixed point j (on to the left, tarsa Ilgoing signal) from one

Let Q again be a Cauchy stabale formula as in J.l. sod suppose it admnits a stop to the next (see 13.3). Hlowever, we will no, pursue thia.

slution Hem is the result on l4' - C and reisted matter

2".4j= n'i (2.3.6) Theorsas 2.3.2. Let Q be a Cauhy stablk diffrce, firennula as en Then. ,

a described in Thin. 2.1 2. with Ill > 1. By Thin. 2.2.1, we must hann either IxI < I seed suppoe s aa that Q a.dmi. a solution

or (a) > 1. Let os suppose Jill < I, and asaume firstA 6 - . Now from ose sep to n 238

the next, the eneelope In,)I increases by the fied ftutor I at all points j. However, - o 238

we may eqaivalently regaed this assa rihtard transtation, as illustrated in Fig. 2.2s. orith (aol = (sal 1 . Let no he"~ milichity v~ > 1. Let n denote the intersection

of (s E C : 1- > 1) withs a neighborhood of = .0 ch.e1sal enough as that Ae

As~ s i that nseighborhood, the map z(a) of IThen. L.3.1 defines v continuous jusnetions

(a(),0 i sith a.(z) - no " & - o.

(i) Fee each i, lither In.(Z(t < I Ve fi EI or a,.)> t Y. E n3. Let a, devote

the nusmb"e sfn's en the foreraetegory snd ve the number en the latter (hcer v =

FIG. 2.2 a, + .). Thlen if . is enen, iv, = v, = ./2; if v is odd, either s ( + 1)/2 and

iv. = It, - 1)/2, or, the reverse.

(4i) Let t( denote the trimnstt speed (S.S.7) foe the signal e 77().Ths

lien t () = Q-o, so) (2.3.9)

foe each i.

(iii) (Perturbation test) If C(a so) 0 0 (so that bya Then 1.$. 1, 1,=
In order ton In) to increase by the fartar jsI, this translation most coner a distance and wee ran waite n~s) fee na(s)), then C(so, so) > 0 iff (z)) < I foe z E 0,. and

42 "aryi.6 CI ao, so) < 0 iff 1a(s)) > I fIes - E n. That is, C(-,, -,) is -0-ptrue, if a=I and

= (IPeosiie if , =I.

that is Proof. The result in.()) 76 1 tar z 1E t ollows tram the van Neamann condition

&Z = - log 1. together with the tact that n,(z) is a ounou~s fuaction at s. The neat at claim (i)
log II sipidby(..)s) hm . f132)

Since the time step has length k Xis. this amounts to rightward motion at a spendismpedb(232(a.Tn..2t G2.

As IlogIllThe proor of (ii) requaires only an algebraic verifestion. If no is multiple, then

Yt lo a) .- ,. (2.3.7) (2.3.2) ad (2.3.7) imply lien..., t.(z) = 0, the correct value. It K0 in Simple, then

For (a) > 1, illuntrated in Fig. 2.1b. the situation is similar and we have leftward by (2.3.5) and (2.3.7), what needs to be sbhown amounts to

motion at.& speed gives by the nine tormua. Eqj. (2.3.7) alas applies to signals with lien lo on A. (2.3.10)

1.1 = I and 1n) #d 1. where it gives the resslt t = 0. .gj s

In the detectior situation 6 > 1, we can stll view the evolution witth time as a weeAi h osato 232.FrKEKOltu rt

rightward or leftward motion, now coupled with a lower-order change ot nhape. One 0 o(I + a'
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.M.t 1 0 Tu b) (~2.3.2). that poitions (5) throeh 0') !hl 1~,, .11",.' ',~, ,t.or

instability for intittl bouniaty -il, yroble-.

= or Aooee~
e 

* O ) = to(l + A-re') + o(S). The distinctions brtweo fitt (4;. . ii ,t lot,. ta.. tOsi b) " 'h,,,

These two fontolas iml 2.2-,i are pncha. the most Mllw.at to. grwsl- Tatble 2 IAt fl-' th, -.toatIr tby

illustrating the contreetion of (4., i(. and (6) tW he bnhot ,, .,f t dlinp--.rno .. ot-

1I) = . cos + O[at) in the vicinity of a poin.t witt C. E it The figure makes t e. r wh) , the cas of

v odd, the numbers of leitgoin anld rghtgoion roil" are nequal

and, since Ano/zo is known to be real by (2.3.5),

I.S Ji = A cos 0+ O(0).:o

IY Laking the ratio of thee equations, one obtains (2.3.10). and this proves (ii).

Claim (iii) is . orollay or (ii). using 12.3.7). 1

The observation t - C anounts to our third explnation of group velocity, to

.ppement those pneseeted in %l.2 (beating of two waves; staLionary phone). The

ideA is sinple- since a wave e,"t'= has uniform envelope l, one cannot o", how fast

the etoelope is moving; " noon as n is tnade slightly complex, however, the envelope TAttL-E 2 1

aeqvirrv shape and its motion becomes apparent. The perturbation test specialises

this to the statement that if all one care- about is the direction of motion, then all

one muot check is whether a) < I or In) >0 I for 11 > 1. 1'

Our goal in this section ha been to set op definitions of eftgoon and eig/htgoing iz > I I , = I ja I ) =14 1 1 = I jo) ' = 1 1 ,1 > o( I a:t

signs, whihb will be of critical importance. fere they are. / <°1 =< 1 1.1 c=° I C 0 I W=o C O

Woin. tot Q admit a solution n of the form (2.3.61 with jai >! I and 6 < - " 6 <

maxn(e.s,) (defined in Thin. 2.3.2). . + I rin{eO, .) e1 + I

(i( If :i( > I and (a) < I (tep. a)
I 
> 1), or if (1) = () = I and C(.,.) >0 ,

(rap. C(s..) < 0), then v is strictly rightgong (rep. strietly |ektgoing). strictly leftgoing stationsxy strctly rghtgoing

(ii) If v is strictly rightgoing (reap. strictly leftgoing), or if (21 = I and (a) < I Y .

(renp. jai > t), or if (a) = ja = I and C(z,K) = 0 and 6 < v. (rep. 6 < vr), then eltgoing rightgoing

is rightgoiotg (resp. leftgoing).

(iii) If v is both righ going and lettgoing, it is "atioAary. (That * v is stationary

if j) - (ai - 1, C(.,a) - 0, and 6 < min(v, v,).) //

These definitions divide the set of solutions (2.3.0) with 6 < (v + 1)/2 into nine

classes, ranging f(om the stritly leftgoing mode o Fig. 2,2b to the strictly rightgoing

mode of Pig. 2.2a. Table 2.1 sumnmaoines this classification. We will ee in 14 and St
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2.4 Application: three-point linear multistep formulas

In this section we study the coss or separable difference models or (1.1.1) with

spatial discretization

T ,L 2.2 o ( - K -'). (2.4.1)

These formulas have been considered previously by Beam, Warming, and Yee )1e79,

Begit. In examining them we will apply virtually all of the ideas that have been

introduced so rar, and in later sections they will serve repeatedly as examples. (See

Dispersion curve multiplicity Lef~going Rightgoing especially 13.2 and J6.4.)
) of go C(ro, so) nade medes We define these schemes by means of shit operators:

Defns. A three-point linea multistep forsssla for (1.1.1) is a separable

> 0 scaler difference formula

p(Z).- = .-- (Z)(K - K-') , (2.4.2)~<0
where p and o are polynomials in Z and Z-1. /

The notation and terminology come from the theory of difference methods for ordinary

2 0 a' is' differential equations; if (tl) is discretised in space by means of (2.4.1), one obtais

the system of equations

2 0 e' .1 d!L swa-n~' jZ

and (2.4.2) is the fully discrete formula obtained irone eolves this by a hiener multistep

', method with characteristic polynomials p and e (BeS).

Three of the schemes we have considered in previous sections ate three-point

linear multistep formulas:

LF: p(Z)= (Z-Z-'), e(Z) = I

7+1

CN: p{Z) = Z - 1, (Z) = 7

4 0 BE: p(Z) = Z - I, oZ) = Z

The others we have looked at- LW, LF4, LFd-do not fall into this elass. For further

4 ojn O',iJ' eamples sce Be791.

let us now examine the properties of a threc-point linear multistep scheme that

we asume to be Cauchy stable and consistrrrt with jill).
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Drpe,sio ,elation (51I). 1ruTni (2,1.2) ae ottain irnc rdtely the dispersion Cauchy stahlity (§2.2). By %sauniption Q is Cachy stable, which means that p

relation and a must b such that I2 < I whenever 1x = 1, with simple roots z ror any u,z
p(z) a), 1

sIt) 2 7( -)' (2.4.3) with 1n) = J~e = 1.

or by ~Duaiptreayi (S2.2). fly con sistency (,e. (T.1-5)) a z = isa. solution to (2.4.3),

p(c
"
') and from (2.4.3) it follows that K = -1, z = t is also a solution. Therefore Q cannot... -jab us I . (2.4.4)

a(e") be z-dissipative, or totally dissipative. (This also follows from Thin. 2.2.4 and the

Orders of dspersos dissipation, accuracy (11.1). The spatial discretilation ract that Q is u-reversing.) It ran however be t-dissipative, depending on p and o,

12 4 11 has order or dispersion a = 3, order or dissipation i3 = so, and order or and will necessarily he so if it is a two-level scheme such a CN or BE (Thin. 2.2.3).

acearacy nin(ns,O) - I = 2. Except in degenerate cases (e.g. IF with aX = 1), Le/eploin and righlgotrig solutions (J2.3. From (2.4.3) follows the quadratic

iQ , nnot do better than this, so it will have a = 3 (consistency roles out a = 1), equation for s,

2 < i o. and order of accuracy I or 2 depending on whether 0 is 2 or > 4. The 2 p 2.) -I =,

,i,svistn .y condition i, 2 ! 2 can also be written
and from this it is evident that for all z E T there are two roots, say at and a,,

= ) + O(( o - )"
)  

-. (2.4.5) satisfying
al J ',. = -1. (2.4.8)

&.. ,tl J§1.2). Differetiaon of (2+4.3) gives For (a) > I these must have modulus different from 1, so we can write

e d j V(1 (l.( < I < (oel for (a1 > I, (2.4.9)

which hy (2.3,4) gives the group speed and hence by continuity,

C = ' + - j (2.4.8) (a,) < I 14r for (a) I, (2.4.10)

for any wave with (o( = )zi = I. From this and (2.1.1), or from (2.4.4) and (1.2.3), The subscripts t and r refer to "lcftgoing" and "rightgoing", respectively; in fact

one ,bains equivalently (2.4.9) implies that the wavins'z" and s -z" are strictly left- and rightgonig, cespe".

S ' 24.7tlvely, for (a) > I. For I( = I the strictness will be lost if (a.) > I and (a.) < I, but

S-asos~ (2.4.7) it will be preserved if Ist) = (o.( = 1, unless C = 0, which by Thin. 2.3.1 and (2.4.8)

where j denates dp(,)/ a,, snd similarly fer b. will happen if and only if x, = x, = :i. In any case there is exactly one leltgoing

Reeasng properties (11.5). If x, z satisfy (2.4.3) with a I, then the same holds value .sz) and one rightgoing value n.(z), continuously defined for Jai 1.

with x = - l. Moreover by (2.4.6), the latter solution has the negative of the group a a a

oelocity of the former,. Therefore Q is z-reversing. One cannot determine whether Q

is t-revering Without further information on p and e. (For example, LF is t-reversing, ]I many cases where one picks, say, I.S to illustrate a point about difference

but CN and HE are rot.) models, it is really its spatial disceretization that the illustration depends on, and any

Separabit (12.1). That Q is separable follows from the definition (2.4.2). Eqs. three-point linear multistep formula Ail show the same thing. With this in mind

(2.4.8) and (2.4.7) confirm the ronseqoence 12.1.14), that C factors into the product we hae described this class pa 'y to avoid having to preot future examples in too

of a sputial and a temporal term. limited a context.
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Foe some ipplications we wilt be interested a1 two soholase, of the k it three- Proof. As-ese > 0, the prs foe < 0 are smlr

point linear roultistep formoulas The followig- etiin are dusi-il tro the theory If Q) is A-stable, then the contrapositiv owt (2.11I) aserts that fr 101 > 1, one

of linear multistep methods for ordinary differential equaatins, has ltc(n - I/.) > 0 TakingsI = ., and using (2.4.0), one obtains Rent, > 0. With

Deto (ReIIt). let Q he a thre-poinit linear mutsepfeslacniteet with (2 4.9) this implies Re a, < 0 < Ii. of for I:) > 1, and (2.4 14) follow-s by continuity.

(1. AYWc ay hatQ i A-tiale f i is('sch)tabe ad hilathep-p yIf Q) is stesongly A-stable, thei the eootrapositioc to (2.4,12j implies farther that

for 1zj 1, either a = ± I or Re fi - l's) > 0. Together with (2.4.8), (2.4.10), aod
(i) Rea(is - I/n,) !5 0 - a 1.C I , with , simple if to) (2 4A 4.1) (2.4.14). the ltter foemula implies (2.4.15) sod (2.4A. ), ao eqolee. l

Q isstrngl A.tialid.if i) oldandrurh,,.,.So far me have sot used cooditios (2.4.13), bat it baa a simple ecrseqatnee:

(ii) Ra(. - 1/o) C5 0,0 S±1 so )1 < 1, (2.4 12)
Theorem 2.4.2. Let Q) he a three-point linear esaltstep, formula foer11-) If

(iii) p(x) = 0, (,) = I nz ef 2415) ( 2 4 13) Q) us 0te911 A..fshle, titer, it is t-dnsspatsse.

The motivation foe ther~e definitins, which is d-oesrd in most hhks us the numerieal Proof. Suppose o = I and Jt) = 1, The fleet of these cootditions iniplies pt.)=

solution of orinary differential ,etuatiens. is that 9iry pros le eonditions for Q) to he 0 by (2.4.3). nd hy (2.4.13), the seend theo implies = . This estahblish.s f-

stahle for Arbitrarily large mesh ratios 5. Biearrt al hase paented oat slbat this is disoipatioity.I

a deciruhle property If mne wishes to apply a tri-ifrn denit dilrere mod-I to find

the steady-state solution of a physical priblev. , thout being enecrn--t a, iut the

aceuracy for the traosienit computation mo 04),
2.5 Extension fram scalaes to diagonailisable systems

A-stable schemes hone some simple priiperl Iti 1It will uria nit to b,,- iiporttt

to their stahility analysis: In practie one is generally coocrned oot with one scolar equation, bst with a

Thace- m 2.401. Let Q) be s thr saint urnea' rnilttstep Piecrna coauterst -nt bypeebolic system of equationa. Such o system tokes the form

u.g 40, sold it> 0. 1 = Au.,, (2.5,1)

([I .) A Astable, thers

where a(o,lt) in an N-vector and A is a square motrix of dimension N. Foe nisiplit

Ron. < 0 < Ro-4 124 14) we awsume an before that A is constant, and we continue to omnit any undifferentiatedl

terms.
for 11 ,vot I'l IFollowing (2.1.3), we car write a general constant coefficient model Q) of (2.5.1)

(u) f Q Wogly tait, henin the form

Reo. < 0 < Ren (2.4 IS) Q-",,,i~ =E Q.),n~ (2.5.2)

andi N-o each n," is as Noecor, aod each Qa in a constant spatial difference operator

a.)1 < I < (ai (2.4 16) with square matixs coelfficts of diomennion N. if these coefflcients are denote by

A,_, then the unalog of (2. t1.4) becomes
foe sll a wisths(a I' , coreys tieA,. a,

Ifa C 0, the sens retals told seth tht rneqs1slst-~ -'14 141 end (2.1.15) Q.),= A,oK'. (2.5.3)
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sciti' iil~iiest, eusationt

PIK(, Z),eIz v 0 =254 
P1 14(K) = P)K, z(4, =0. (2,5.9)

,to~~aZ~e = . (25.4)The following theorem no n extension of Thin. 2.1.2 (of. (Gu72], No. (5.5)):

If the sysems (2Slit) is hyperbolic, thee A can be dial;ana.liocd aid it has real Theoremn 2.5.1. Let Q satisfy Asumpion. 2.1, and.t s sa-tsf 1.1 >1. Foe

eeiaerle trineiple, the matrices (A,.) might not base this property, or they I o N let )o't.o. eoethe dustinct nonzero. rots of f' -,slkn

imight each be lignliaeaithoat the existence of a tingle matrix to diago..alise of multiplicity .() Then the seeneio

Il of them sim..laiacesly. Blat this rarely happens in practice, and indeed unoally I< or < N

eacrh A,, in a yoly-nsal in A, no they are all diagooaliieii by the nine esatrin in A. =' 1o5rrp' !5 < 5 MW5.0

,ehrefoeea ill elahe the asnmepion (= Ann. 5.4 of [Ga721): 0 < e <

Assmptinn 2.1. The roatricen (A,,,) are simualtaneously diagonsalirahle. That are linearly independent solutions of (2.5.91, and they span the linear apace of all such

s.rl,.e siena ontat oeisgular N x N matrix T nueh that solutions. Here v"I denotes T-l)0. .1,0.,0)T where the I u in positin a.

A,,=TA,, T = diasg(i
1.  

0
t'. ( (2.5.5) Proojf Diagooalioatia.nrf(2 .5.9) by T gite, i'.()i4 = 0 with 4 = 74. The

eiiltions to this eqoation are, gie ci yomeceraijse by Tho, 2 1.2, aud have the form

-1h~ atfI. rail j'ai no~~(0...010. Matiplying by T-' eooplete the pr.

With this aciytou. the stniiy of waves propagation anone diffemee stodels of Thin theorem completely~ desc~ribes the solutiocs with regular behavior in t that

25.11 -re dsliregtly to the revolts already established foe scolar prohlemon. From are admitted by Q. Each oe is nothing more than a moalar signal transformed to the

SA5.) and (25 moe obtains basis determined by T. Therefore all of the theory derived earlier applies direetly.

1For 6 = 0 and )a( = Ia 'l( = 1, n' = c'4l, represents a wane that propagates

1',K, Z)h= AeK"ZjhIi = 0, (2.5.6) uniforrmly at the groap velocity (ef. (2.3.4))

a.tere v denotes To an,' P denotes TPT-1. Now P is a bivariate polynomial with C!.) = - Idt( ) (..

diagonal matria noellicients. This system in eiialrot to the N msea systemd!) .*

[,t s We may that the sigoal ei is leftgoiasg, rightgaing, strictly lef-tgoing, strictly

P
1

'(K.~~~~~ Z<t~ a L~ aV its~ll < N. (2.5.7) rigbtgoing, or *tationw~ y precisely when the corresponding termi bold for the scalar

signal t4
1

ri

Eac,.h equation (2.5.7) bin the sme form as (2.1.5). Corresponding to the polynomials The definition of the non Neuimansn condition and Cauchby stability gusen

1'. and P. of 12.1, we can also define matrix polynomials P., P_~ P5* and P.~ in the in §2.2 apply as; twritteo to the seethe modlel Q. (The symbol 10,1 is the definition of

obsions way, and P. and Pk are diagonal with moalar components P5.a and Po) . the lattee nmust he interpreted as the two-noar, of N-neetors rather than on ahsolute

Following (2.1.18), we now ak: givnz ZEC , what solutions of the form value.) it fnllows fromn thes definitions that Q satisfies the son Neomann condition,

(2..8)or is Cauchy stable, precisely when the nine is tre for all of the senao problems is

= te, (25.8)the dliagnnaliaation (2.5.7).

where (*,) is a seqaencee of N-sectors, don Q support? Suich solutions will be let no and nr denote the total number of linearly independent leltgoing said

precisely those sequesees; satisfying, in extension of (2.1.19), the matrix reolovent rightgoing signan, respectiely, admitted by Q for mine zwith (a) 1 . Thes by
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(2.5.10), the general solution or the form (2.5.8) can be written Thus u -n and u + v are the characteristic variables for (2.5.13). The same matrix T

diagonalise (2.5.14), and therefore the vector leap frog model decouples into LF for
= a1'*, + F . . (2.5.12) each of the two scalar problems i, = (a - I)b. and i, = (a + I)i,. It follow that

for any z with Ia _ 1, (2.5.14) admnits four fundamental solutios (2.5.10), namely

It is obvious that Assumption 2.1 has rendered the developments of this section

fairly trivial, and one may muder why it is worth mentioning systems of equations (') (I ) I " 1,

at all ir they are only to be reduced immediately to scalars. The answer is that as we

turn to calculations of reflection and transmission coefficients, and then to stability ( s , )
for initial boundary value problems, boundary terms will appear that couple the \w]I a -

salar components together and cannot be diagonalised away. The meaning of this If (z = (a) = 1, the first two have equal and opposite group velocities in the range

for practical applications is that although a hyperbolic system of equations can be between ±1a - II, and the latter two have equal and opposite group velocities in the

reduced to characteristic variables in the interior, it may be desired to give boundary range ±1a + 11.

conditions in terms of primitive variable,. For more on this distinction ace 1(Co80 and

[Cu82.

Let us finish the section with a simple example of a difference model for a system

of hyperbolic equations (cf. 55.1 of (Co80! and 54 of (Gu'7j).

Example 2.1. Let the hyperbolic system

= i(:).(2.5.13)
be modeled by the vector leap frog scheme

+ IaksX) lv,) (2.5.)

where we have abused notation by using the letters u, v for both exact and computed

variabico. Eq. (2.5.13) can be diagonalined by the matrix

T ;'
which converts it to 0

. 0 a+IJ VO

with
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- f ez 
with ,6 E Irt, or ibore generally of any signal Z"K 2.1.2) with Ko,z E

(C and z I > 1. hits a boundary or interface from one side. The Interacion will

be complicated at first. As t increases. however, a steady-state solulion will

normally be approached in which the incident signal is balanced by a eoloction of

monochromatic rflecrted and ponsibly transmitted signals znj
. 

All of these signals

3. BOUNDARIES AND INTERFACES will hae the mne time variation factor z, but their space factors a, will vary. For

the case of an interface at j = jo, with the incident wave coming from the left, the

steady-state solution will take the form (cf. Thm. 2.1.2)

3.1 Reflection and teasasnision cosffiisssts e an +.s. Z , 
-

t j S

Most practic;l finite difference models are complicated by the presence of bound-

urics or interfaces, at rhirh the properties or the model chatige abruptly with respect hlere [f ard 1. are "left" and "right" index sets, respeclively In this notation a a

I,. e houroiary tray be icpoed physically by the problem being modeled, or it may value of -1thi liity , appears I times is the ildex set, sith corresponding/J values

it. a n,ercal artifact required to keep thc grid finite En771. Likewise an interface 0,., I, The uiollicatio, or (3. 1.1) for inidence ron the right, or for a boundary

Ma, reprsent :i disontinuty in the physical -ediun, (li79lMoM ,So741, or a numeri- instead of on interface, are obiouts l)ependlng an labeling of woints, the precise orm

-1 disrniniy such as a change of meh size (mesh refinement) ICi7t,llr73,VifIlbj of the solutieti ouight also change in unimportant ways for j a 0.

,it ordifference lorvula (hybridisation) [Ci72,01761, Also, if the solution to a partial Too principles determle what K's may appear in (3.1.1):

,llerential elu;ation contains shock or other discontinuities, it nay be useful to think The set (n. ,)) erstzcd by Is (resp 1,) consult of preresely those di tseI' pairs

of thew ao moving interfaces jApSg.Ch78,Ch79. Whether a boundary or interface is (a,,6,) for ihech:

yhiyoical or purely nmerical does not affect the procedure for analysing it. numerical (1) (s.,, a) stisJles the dotpeeseor relatis' far the differee fornta wopl.ed e

behavior, which we will describe in this chapter. Of course it does affect the results of S< p (rop. 3 > Ju) seth a, ofrnttsplcetp/ e > 6, (Thme. 2.1.2); end

this analynts and their interpretation. For example a physical boundary or interface

niay be ,-xpected to reflect sotme energy backwards when a wave strikes it, eves for (2) The siprel (2.5.6) mcdh poromer t,. d, s leflpois; (ens. r'g/tgadng) (see
Table 2.1).

C a 0, whereas any energy reflected ty a purely numerical interface is spurious,

ard must approach 0 for w c = 0. The intereting restriction is (2), for it shows that the numerical behavior of

Our approach to the analysis or reflection and transmission problems is based on boundaries and interfaces depends fundamentally on group velocity. The psinciple is

the examination of steady-stae solutions with regular behavior z" in I. On the race of simple: a wave impinging on the interface can stimulate only energy that peopagates

it this is Fourier analysis with respect to t. but the subtlety of the problem tomes from outward from the interace, not energy conting in from infinity. In physic this is

the inevitable need to make a connection between the Fourier spectrum in I and that in called the Sommerfeld radiation condition. We will not attempt to jstiry the

z. Fundamental to this connection is the distinction between le/Igeing and righleeiag condition mathematically in the sense of showing that transient signals approach

solutions presented in Chapter 2. In 113.1 3.4 we study scalar monohromatlic igna* (3.1.1) a t - gc. tBy construction, however, (3.1.1) is itself guaranteed to be asolution

and in 13.5 we superpose these to consider reflection of a general wave packet. In of the difference model.

13.6 the formulation is generalized from scalars to diagonaligable systems, and we We emphasise that the signals present in 1, and I, are determined by ameserical

introduce a general notation for reflection problem. wave behavior entirely, so they may be any mix of physically realistic waves, Parasites,

Here is the main idea. Suppose that the wave frost of a monochromatic wave or signals in between. For )e) = I some may have (a) = I, and others ( -C I or
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IKJ 1 I. Only the amplitudes {o,(z)) of the stimulated signals are affected by the Let us determine the steady-state configuration that results when a strictly

algebraic details at the interface, and determining them will be a matter or linear rightgaing signal az" (2.1.2) with jzI I hits the interface from the left. Whatever

algebra. These amplitudes, one for each outgoing signal, are the reflection and the signs or - and a,, there are three signala to consider: one incident, one tram.-

tramsnission coefficients for the given problem. mitted, and one reflecte. Their functional forms are indicated in Fig. 3.1:

For setting up interface conditions we need to rule out possible degeneracies in

the difference model. We will afume that the difference formulz Q appearing on

either side of the interface satnify the following condition (cf. Ass. 5.5 or JG0u721.
H~z" FIG. 3.1

Ausumption 3.1. Q is Cauchy stable, and for all a with (a) > 1, the polynomial',sa.

P,(x) of 12.1 has nonzero Oth and (t+ r)th coefficients. Moreover, or the I+ r solutions

(2.3.6) admitted by Q, exactly r are leltgoing and exactly I are rightgoing. /

We will let the symbol Q denote the complete difference model, consisting of one The j's in these expresnions are halr-integers. We will ignore the question of the choice

or more "interior" difference rormulan Q, Q_, Q-, etc. together with additional or square root.; it does not affect the final result.

(onditions irrposed at the boundary or interface. Given z, the quantities r_ x,, , re determined by the dispersion relation (2.1.8)

on the left and right:

- ! = xa. - ,') = Xa_(s, - s = xo~, - a'). (32.2)
3.2 Exmples

h Our purpose is to find tOe reflection and trunsmission coefficients A and B. The
The best may to show hoc reflection and transmission corfficirot ore colcoloted

is through examples. We will now give a number of these, deferring a more formal equations needed to determine thrm are the interface formnls* at = * , which

assert that the steady-state solution satisfien the difference formulas at those point.:
treu tmeut to (3.8, and in the proven euplore va rious prohlerus of interest is their owun

right. Most of the results derived here will be applied in later seetions, oc, - -j = X.(" , - ,,

Exm ple 3.1: LF with abrupt coefficient change v7' - v = Xi .(Vl - e

Consider a first-order equation with discontinuous coefficients, Inserting the wave forms of Fig. 3.1 in these equations gives

u, n (a <0) a_.04$0 (3.2.1) - + A ') ,

, >0) 1 (3.2,3)

If 4-.,a+ < 0, the solutions to this equation consist of rightgoing waves, which pass - )B.,"' - J3/- 'n - A<").

through z = 0 with no alteratiou but a change in wave number. In particular, no We could solve these equations for A and I and get forsiulas involving z,, .,

energy is reflected backwards. However, let (3.2.1) be modeled by LF (1.1.6) on the and a+. In general, this in the best that can be done. Iowever, for simple problems

grid z, = jfor j= a. so- for i < -land a, no, one may conveniently eliminate a. In the present ease, applying (3.2.2) to (3.2.3)

for j > . Now, when a smooth wave passes rightward through the interface, a eliminates not only z but o as well, leaving

leftgoing reflected parasite will be generated. If a_,a+ > 0, on the other hand, then

a* wtoothed wave can travel rightwards through the interf;.ce, and it will generate (u - 7) + As'
5

(u. -
- 

) - nJ'/
5 

- AsI
1

,

a reflected signal or low wave number, ( t - K-)1u' 
3  

- ,-/s -AsI/,
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h = .5, h = .01 on the interv.l J-1, I]. At = 0 the oscillation
hence because of cancellations,

i., 2 (3.2.4u(-I,t) = sin 301

Bs-1/1 .€-112 F A.
-

1
/
2

.

u - hA. been turned on. This generates a rightgoing wave that is well resolved on the mesh

The solution to this pair or equations is (s 21 pointu per wavelength), and Fig. 3.2a shows that by t = .5, it ha traveled at

the correct group speed C so 1 and should hit z = 0 at t I. In Fig. 3.2b, showing

A ' -'u' = -r.J -" (3.2.5) = 1.5, it is evident that the transmitted wave must have traveled at approximately
A - , v

0
, -.- V

0  
its correct speed C j. We are interested in the reflected parasitic wave that appears

We have now solved the reflection and transmission problem: given z, first compute as wiggles in the region 1-1,01. Apparently it has moved at speed C so -I. which is

K_. , x, from (3.2.2), then derive A and B from (3.2.5).

-qs. (3.2.5) have a pleasing symmetry that becomes particularly useful in the

cIy, of strictly wavelihe solutions, i.e. 121 = (0,) = (a.)J = I,) = 1. Let us write s
elf."

(o) °t 1 I\I ,=.5

- c A = u.i =(0, 3= ((- a,) Cin(, - 0&) - . I.$

(Of coure, these formula are also valid fon 0 j IR.) -i . . ..

A further simplifiation follows from the fact that for LF, a. and a, or8, ad 8,

are relOated in a siple way. From (2.4.8) one has, = -/a,, hence (c) t. " h - = 1.5

(c i'i*w4 r high-pass filtered
0, = -8. (3.2.7)

2 " . n . . . . ..a'

With these substitutions (3.2.5) and (3.2.6) become
o.: ,,I u, |t = 2

1+(d) ~ Uhfhfa~IIIhb~fEhigh-pass filtered
A. 7= " (3.2.8) s

A iis(0, +80.)' ooD (3..9

FIM. 3.2. Reflection and transmission at an LF interface. A forcing
These equations show that in the lmit of a vanishing interface, L.e. a- a. and oscillation with wk = .15 has been turned on at t a 0 and hits a

hence 8, as ,, one obtaion the physically correcct values A % 0, D so 1. In fact they coeflicient-change interface at s I. The model is LI fr ut a ns

imply A - 0( - a-) se 4. - *- - 0. the let, ac = -.5%. an the right, with has 1/100, k - .5.

DguOreSTRATlION 3.1. Fig. 3.2 shown an experiment with &. - -1, a . -. 5,
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what we expect for LF. From (3.2.9) we can predict its amplitude. We have to another. The interface may involve just a change or coellicient, as before, or it

may include a change of difference formula also, for eample from LF to LW. For any
5, = 4,h/2 / wh2 = .15, such problem, one is led by (3.2.4) to (3.2.5) and (3.2.6). Afer this, eq. (3.2.8) and

0. = 2,(/ I we 2h/ft .30. (3.2.9) ace not universally valid, but since all they depend upon is (2.4.8), they will

hold whenever Q"- is a three-point linear multistep formula.

Eq. (3.2.9) therefore gives As an example, suppose (3.2.1) is replaced by the second-order wave equation
sin .15

= as.. $0 (3.2.10)
The exact value for (3.2.9) turns out to he A = .1884.... It is hard to tell from

Fig. 3.2b how well this agrees with the amplitude of the wiggle in the experiment modeled by the leap frog scheme LF',

Therefore Fig. 3.2e isolates these wiggle by showing the result of passing the function

in [-1,01 of Fig. 3.2b through a high-pass filter (discrete Fourier transform; serving v+' - 2 + us-' = {), ..(v+t - 2o' + v'_.). (3.2.11)

of lower half or spectrum; inverse transform). Fig. 3.2d gives a similar filtered plot

for 9 = 2, after the initial transients in the reflected wave have died down. The This formula has the dispersion relation

agreement with the prediction IAI = .1884, represented by the dahed line in Fig. 2 + s
-

' = (),a,)'(. - 2 + C-),

3.2d, is ohvio-rsly excellent.

from which one may see that instead of (2.4.8) and (3.2.7), x, and a. now satisfyExample 3.2: Abrupt change between arbitrary 3-pabst snhemaso

Consider eqs. .(3.2.4) or the last example. Although our derivation made use or . va. = 0, 0, = -0,. (3.2.12)

the dispersion relation for LF, it is obvious that what these equations really assert is

this: at j = -1/2 and at j = 1/2, the lefthand representation v, = (a + A4)z' Now both the incident wave and the reflected wave can be physical (smooth) at the

and the righthand representation v' = Dx'z" are both solid. (A priori, we knew only same time, for (3.2.10) permits wave motion in both directions. The reflection and

that the former was valid at j = -1/2 and the latter at ; = 1/2 (Fig. 3.1).) This transmission coefficients for (3.2.10) can be obtained by enrorcing C' continuity at

suggests that the calculations of Example 3.1 have a wider applicability. This is in x = 0, and are independent ofr and ( (see e.g. [C1761, 58.1):

fact the case. A I/_ - 1/a+' R 2/a-3

Let Q- and Q, then be arbitrary three-point difference formuls sA described in I/a - + I/a+ I/a_ + I/o " (3.2.13)

J2.1, to be applied for j < -1/2 and j _ 1/2, respectively. By this we mean that the These formulas are written in a standard form in terms of the admittances I/st; one

stencils satisfy e- = r- = I, 1+ = r+ = I. (In fact all we need is t+ = r- = 1.) could also use the impedances at directly. For the LF
2 

model, the corresponding

Assume further that Asnamption 3.1 holds. The following argument shows that eqs. results are by (3.2.5), (3.2.6), and (3.2.12),

(3.2.4) must hold. We know that the representation v" = D o',z is valid for j _ 1/2. 1/"'

lly the definition of x, it follows that if vn,,, = Ia.t/n.r. also, then Q+ will be A = B= (3.2.14)

satisfied at ; = 1/2. But Q+ is satisfied there, and Am. 3.1 implies that if the values
orsiv(O, - 0,) _n 2_vfar J 1/2 are fixed, then this can only happen for a unique value or u --. lor A = -O 0,) , - sin 20, (3.2.5)

Therefore n',_, = Bx/2
0
t

. 
The result at i = 1/2 is similar. i.)0, +0') - in(0, +0,y

Thus most or the calculations of Example 3.1 apply not just to (3.2.1) modeled by This last pair of formuls is a trigonometric analog of the admittance formula

LF, but to any interface at which one three-point dilference formula changes abruptly (3.2.13), and approaches them for small ( and w, but it is not the same.
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Our calculations apply to dissipative schemes also. Let (3.2.1) be modeled, say, The determinant of thin matriu is

by LW (I.I.I). For a_,a. < 0, a physical signal will then have o., ,.c I and (it ll / II 4.-.
follows from (2.1.9)) jIv, a I-j > 1. Therefore tPe reflected wave is evanescent,

and will have negligible amplitude except near the interface. It can by no means be According te Cramer's rule, the solution Lo (3.2.16) can be expressed in terms of ratios

ignored in computing B, however, for it need not be negligible at e = 0--i.e. A itself of such determinants. We find (cf. (3.2.5) and (3.2.6)):

ed not be small. This situtation is typical for both dissipative and nondisaipative sisn( -80)

models: evanescent modes are often present that have negligible sine away from the A, = (3.2.17)n-, (Oc- . o, '- .. I si( , , .-2..

interface, but their influence is still global because they affect the amplitudes of the aea ns-

non-evanescent modes. These formulas give the complete solution of the reflection and transmission problem.

Example 3.3: Abrupt change between schemes with larger stenclils in practice, if the incident signal iswavelike (I.z = s%) = I), then often some reflected

The principles of Example 3.2 apply directly to difference schemes with larger and transmitted signals will be wavelike. others evanescent. However, this distinction

stencils. Let Q_ and Q+ have stencil sizes I_,r_ and tf,r , and assume that both avfects the values or {(x) and (0.), not the form or (3.2.17).

rormulas satisfy Assumption 3.1. We seek the reflected waves that result after an DIONSTVLATION 3.2. As a particular eample, let US Again €onsir the problem

incident signal 4z" with Izl > I hits j = 0 from the left. For j < 0 there are r- or Example 31, but with LF replaced by l.XI (1.1.17), ahoe stencil :overs five grid

leltgoing signals, and if we denote their amplitudes by -A,,.., -A._, these may be points in r F. (3.2-16) now becomes a system of dimension 4, and for typical

written

-A.,o,', 5< P. <

(We ignore the pomitility of defective modes.) For j > 0 there are t+ rightgoing n* 1

signals, asd we denote their amplitudes by A,_, . .A, ~(( a =

A,,,', e_+t<,<e+t+. -f e/-,c .1....

Exactly s1 the last eample, Assumption 3.1 implies that the rightisd repre- -1_______5__

sntation of v," must hold sat just for j >! 1/2, but for j 1/2-41- This follows by P,,
the some argument as before by considering in succession = -1/2,-3/2,.,I/ - V V

+. Likewise, the lefthand representation must hold for ill j ! -I/2 + r-. All ,

together, there are + + r- matching conditions i extension or (3.2.4), and they lake -

the formof avan der Monde system or equations: ci u d" 
, l.la., ic ib 1 h =Lt

Fir_______mm _____________________I_ high-pawn Altcred

IIV 4' A, I-' I. l iI

4 ' A, (323.Is) Fic 3 4 Iteflletion and transmission at a n L 4 interface. Sam a
-0+ A i,,, k ) I ig 3 2 but mith LF replaced by LFi.

a-ie-£+.
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vaues of z wth Ji.= I we expect one wavelike t,.e and one evanescent mode on An enact calculation from (3.2.17) gives thc slightly lacgcr result
each side. o showen in Fig. 3.3.

Ae a -. 100476 + .001246i, (AJ - .100484.

-A24s"These oumbers aee in good agreement with the magnitude of the wigles ohbseed in

Ano'no Fig. 3.4b, which ame once sgpin ioolated by a high-pass filler in Fig. 3.4c.

-AiizFIG. 3.3 Rwaampls 3.4: Msh--sflmnanet intefaes

.joe x'.s*Instead of considering a discontinoos coefficient, let us now lobk at probalems

coowhere the mesh sine changes discontinuoosly at z 0. We will stick to %he equation

u, = au. and to modelo with one leftgoing and one rightgoilg mods. Asume that a

rightgoing signal xaz" hits the interface rrom the left, generating stedy state reflected

Fig. 3.4 shown a repetition of Fig. 3.2 with LF replaced by LF4. Qualitatively, the and trannmitted signals Am'o an" d B&os". We will calculate A and B for threse

behavior appears as before, except rot one interent-ug changes the reflected parasite different kinds or mesh rcfinemcnt.

now travNl at speed C en -513, not -1. This is in keep~nS with Fig. I.I and with(sCrdmehefn et.Teelcioadtasisonpprisofheo-

(1.281 or ot = 4. Lt u prdic theampitue o th refectd praste.lowing ,nrnh-refinement scheme (in its nemi-cdiscrete limit) are analysed by Vichnevet.

Io h ie polmz 1 and so 21.2 imlss - sky in (Vifl1b). Let z, denote jh.. for j ! 0 aod jh+ for j 2! 0, where h-. and 4v
Oe.-- 3 ~ arc arbitrary. Let (3.2.51) be modeled at all points) j y 0 by LF, or more generally

i.e. -by any three-point linear multistep formula (2.4.2),

a + S.-Ico0,(Z) . ;+ - 0"1(..8

on both aides or the interface. The seron or this polynomial are ka(Z) 2 h,:32.8

-1l, -1, 4-,rIS. 4+,riX. and at j= 0 by the related to-mula

The first two value. correspond to ight- and lettgoing wore modes, respectively, and Piz h. +i. (3.2.19)

the seond two to right- and leftgoing evanescent mode.. We will order the n 's ik(Z)
0
' -h.

sccording to s illustrated in Fig. 3.5.

aO M 1, .1n t aneo 4+vi V S1 3 1,, uco4 - %F15

but we will seed a little more precision for no and x3, namely (a. in Example 3.1) X FIG 3.5

no se 'a w I + .30i, 02 50 e~ en f I + 60i. X o - nh n+ . .

Now from (3.2.17) we obtain the amplitude sought,

A, (91 - OX-3 - ioX-4 -0)931/2 The interface formulas for this model are then
(on- SX93 - sMu-.): + A =8,

(3 + /J5X-3OO)X3 - V'ITX-i) -1.8 P(I + A) a (17K. - / A/a
(5 + -,/15M2XS - r/t5XI) 20k() h+h

81 82

1 it



Ater making use or the first formula, the second can be rewritten which b) mea s of (3.2.18) reduce to

h.) lisAp) ) .) h+,c ) (I+ A) = (I + A) - a/a. - IA/,. ( - / I . A) = aX.(ol + A) - .'-

The quntities z,kh±,a c n be eliminated from this equation by means of (3.2.18) i.e.

or (2.4.3), and one obtains (I + A)/I, = n' + A.,--.

It,-I _+ At. l, ,),_I ,1
I/ .,) + 1 A( , - I/.,) + 2 - 1/a ) (I + A)cc. - I/c , - A/ a, and therefore A4 = O;- - I/cc. (3.2.23)

hence I/ct -

(cc, + I/,) + A(,. + i/..) - ii + A)(,, + I/c) -0 By (2.4.8), this leads to

which implies A= aI /cc B (3.2.24)

(- + /) -(, + 1/,)I - (-) .

By (2A 8). thi. lead" (ins) BKO mesh refinement. The following BKO" scheme wo proposed by

(, + I/c) - )c, + i/c,) - 2(, + i/3) Browning, Kreino, and Oliger in [Br73), and some of its reflection properties Are

A = . I c+ I/,) + )os + I/,) B (K, + I/.) + (14 + i/a)" (3.2,20) analysed in [ViSIb). Suppose again that h- and h are arbitrary. Now let the left-

An alternative expression for these results is and righthand grids overlap, As follows:

cosh - .onh B = ossh (3.2.21) tight:A=co, C.h + to ,h' -= o,h + co. Ch'

Compae (Vi8lbl, eq. (26). left: 7 =jl.. j = £,-),- ....

(it) Coare mesh approximation. Suppose that in the above setup, h+ is Asn

integral multiple of h-: h .mh-. Then instead or (3.2.19), it is natural to consider

applying the coarse mesh formula used for j ?_ 0 at j = 0 also, with the leftshand h,_--___ -

value needed taken from j - -m, as illustrated in FIg. 3.6:
2p (Z) .- x - x - x - FIG. 3.7

;M-)5; = sh+(s -" ). (3.2.22) h-

Then, asa discrete analog or C' continuity at a = 0, consider the interface conditions

FIG. 3.6

1 _ _ I +(3.2.26)
W_(Vt - s:) - jL(oj - +-)

with this interface condition in efect5 the interface forllUlss besom (with obvlous notation). The corresponding interface formuia ar

S+ A-B, ,.I + ,-' + A(s) + ;i) - i + -i),

#() ( + A) - s-c)( 
=sB,- Acc c).
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These have the solution where K is the spatial shift operator defined in j2.1. Then A will satisfy

A - cot0, - h. tot, B h- ot - h- cote, (3.
h cot oe - h ot _ h t ot, (3.2.26) (a4 _ I)' + A(.4 - I)* - 0,

where 0. = (.h/2 again, s that tU, = i(-! + s()/(i - i), sad so on. For the befns

ease of three-point linear multistep formulas, (3.2.7) converta the resut to A .- -U). (Slim)

A -h cot 0, - h+ ot ta B - h- cot 0i - 4_ ta" e, (3.2.27) if Q is LF or ay other three-point linear multistep formula, then (2.4.8) converts thish+ cot 0. - A- tan e0' h+ cot #. - 4_ ton ej" to

For LFa, similarly, (3.2.12) redue (3.2.26) to A-( - !')' -( . (.
:- , --I, -I-+- "(,.

A = - t, - h+ ote, 2A- cotC. (3.2.28) Suppose alternatively that the boundary formula is (q - l)at-isdse apeie-ts
A sh+cot0l+ht+ott A ,+ot5 +h,ote" extrapolation,

Again, these equations are similar to the admittance formulas (3.2.13). ST (KZ
-
' - I)-v; - 0, i > 1. (3,32)

Example 3.6: Bondarie 
Now A will satisfy

Finally, to justify the title or this chapter we must consider some problems

containing boundaries rather than interface, at which there will be reflected but not (a, - z)0 + A(a, - •)e = 0,

transmitted signals. Let the equation hence

A = (( -) "32.33)U.=G. z> t0, a )A0

For three-point linear multistep schemes this become

be modeled by a difference formula Q on the grid z, = jh, j = 0,1,2 ..... If

Q extends t points to the left or center, then numerical boundary rormula will be A = ((3.2.34)

needed orot the pointsj = 0.,-I. Let us aume t = 1, so that only one boundary +

formula is needed. Ir a strictly leftgoing signal slz* hits the point j = 0, then in the This is an example in which it is not practical to eliminate * from the formula.

steady state some energy will propagate rightward so a signal A40
, 

We seek the

reflection coefficient A.

Our purpose in this section has been to show how reflection and transmisios

coefficients can be computed, not to apply such computations to the evaluation oi

Fic. 3.8 particular numerical treatments or boundaries or interfaces. But obviously this kind

ot of information is potentially useful ir one is trying to choose between various numerical

methods.

The reflection and transmission behavior we have predicted, like the group velocity

Suppose first that the boundary formnnlais(q-I)st-order space extrapolato n, phenomena or Chapter 1, can be readily confirmed with numerical experimea.

We have performed a number of these, hut excpt orot Demos. 3.1 and 3.2 already

S (K - I)"ve+' -0 q > I (3.2.29) presented, we will not tLake the space to describe them here.
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3.% tEnrgy 6Lu sad energy coa serathota Of the mcsh-refincm-ent problems vosidered in I'sampe 3.! of the last sction.

two conserve energy exactly: "crude riesh refinement" for any three point linear
*happos" that a Cau.liph stabl]e dill, rente formula admits the wave rolutronI

multistep IormulA Q, and BKO mesh relinement for Ll. l.el us erify these claims.

A' A.'S (331 For Q applied to a, - an. we have by (2.4.7),

for some constant A, with 0z) = I. If js) = I, then by Thin. 2.3.1, the wave has a well C = 'as f h f(,)

defined groop velocity C 6 JR. it is natural to define the enr Ouse (mgnitudej 4 frot some runction f. From this foemula, the reflection and trannsion coefficient
of 3.1 1 as the absolute group speed times the square of the amplitude, fr crude nsesh reftnement herome

4 JA )Al
5
ICl ift - (a) as 1. (3.3.2) A = C,-C, 2C.

+ C' C. + C'

Oue -chtlt p-out that asymptotically, -0 measures the I energy fow per unit time Inserting these values is (3.3.2) now gives the flooes r CIt), ss (fil-i))

,(ros a Ki line x - s , Other definitions could be used for energies other than

t.aIr -, ladsj I, then there ins energy flux, V.)C, *.s------- $a

'(C. + Ct'')"

0 ash 1or It) = , 1.194n 1. (3.3.3) and applying these to (3.3.4) yields

If i.l > I, in which case Io) I 1 by Thin, 2.2.1, then a sensible definition or 4 would E + -C -+4C.C ,

haur to uary with x and increase with I. But we will riot define * in this case. C' -oCs)

(;ivrn a difference ,todel containing a boundary or interface, we naturally sk: as claimed. Similarly, for the case of I.P'
t 

with BKO me", reremevt, erls. l. .l7) and

does the intrface conserve energy' If nt, how clone does it catm' o, tbe s.eady (If.f) (ignoring the terms in il) imply

state lttions of the last section, we have all the machinery in place to answer

the e questions. Assume, for example, that or a a . is modeled by one threc-point C' sin i4 2x, sin 0, Cot 0,

difference scheme fo z - 0 and another for z > 0, and that a rightgoing ae (3.3.1) 
{ 2

is incident on the interface at z = 0. In the steady state, reflented and transmitted as , oot#,

waves will e generated. We define the efficiency or the interface for the given wave,

E, by the formula with corre spodint epresions for C. and C,. From this formula and (3.2.28), it

= + . (3.3.4) hiallows that (3.3.6) holds for this problem too, and this implies E = I as bere.

Ai Ilowver, it is only in exceptional cases that a boundary or interface conserves

Energy is almorbed, conserved, or treated at the interface if 9: < 1, J5 i , or 9 > 1, energy rxatly. The reason is that for this to happen, the errors introduced by the

espeetisely. More generally, i an interface geneartes a collection or outg oing sgnls interior rormualas and the interface formulas must exactly counterbalance, so the two

in response to a collection of incomlng Qnes, then the efficiency for that configurstion sets or formulas must be fortuitously Compatible in some sense, In particular, the

iother mesh refinement problems of the laust section, such asu L" .ith MID or with the

- £ £ * (..coarse mesh approximation, do not ex. ctly conserve energy.

Energy conservation is an attrnctivr property, especialy if extensions to nonlinear

. ote ide- s Ithis tieston appear In (VIii. problems are being considered, but one should not automatically asume that if one

1 '



,nrrfa'e exactly conserves energy and another does not, then the former is better, does not become zero), the vanishing of the transmitted energy nux is not. Instead,

Fior LF applied to u, = au, for example, (3.2.27) implies that the sonconserving 4' decreases smoothly to 0 as w Is,, since C decreases smoothly to O.

BKO interface generats R relleeted parasite of amplitude A = 0(h), while (3.2.21) Vichnevetsky points out that in the case of interfaces between LF models, the

gives A = 0(h
2

) for the *crude" interfaee. Surely it is no virtue of the latter scheme evanescent wave that appears for w > w, always haa wavelength 4h VISOViSIb.

that the spurious signal it generates on the left is large enough to balance the flax The explanation is that by (2.1.8), czi = I and 101 # I can only happen with x pure

error it introducer on the righL imagicary, which amounts to wavelength 4h. The '4h phenomenon* does not extend

to arbitrary differenee models, however.

3.4 Cutoff frequencies, asd evanaseent wavs
3.5 Reffecticon of a general wave packet

We have observed earlier that although a nondissipative difference model Q must

admit waves of all wave numbers ( E i-s/h, n/h), the same is not true for all By the methods described so ar we can now determine exactly how a moochrom-

frequencies w E I-n/k, s/k]. A fretquency that corresponds to no wave solutions may stic signal e'
(

'-
-

e
l 

is reflected and transmitted at a boundary or interface. The

le said to lie in the stop band or forbidden band ror Q. In Figs. la-c, these are question is, how can in information be used to predict the reflection and transmission

the values or , for which no value of t appears on the plot. Or course there will be ofageneral wave packet' The prohlem in on Fourier synthesis inan inhomogeneus

some wave number C for every w, since Q must do somethtsg in response to a forcing medium, and it is subtle.' One night expect, for example, that if the reflection

oscillation sin , but for a in the stop band will be complex, corresponding to an coefficients satisfy IA(U) S A., < oc for all (, then a general estimate 11011 1

evanescent mode that by (3.3 3) carries no energy. A.,.IIV
0
Il will hold. Ilow ever, Thin. 4.23 will sho that this is not the case.

In a problem involving an interface, it may happen that a frequency for which We will study the simplest possible example. Let the equation

a wave may exist on one side lies in the stop band on the other. In this event the ., = r,. .t, > 0

response to such an incident wave will be di = 0 total reflection. Given an he modeled hy a finite dilferenre scheme 1? on the grid (0 ,1..) = (ih, th) foe .J,s >)0,

interface, one may look for the minimum frequency ,.. the cutoff frequency, at with h = I for convenience. Let Q consist ofQ =CN (1,1.16) for all points j," > I

whici a transmitted wave eannot exist The solution to this problem will satisfy the cou pled with some twolevel houndary cluation ror = fir > I. Fnr initial data we
cutoff condition take

C((.,.) 0 . (3.4.1) -c __ ,-

One can see this by considering that in a dispersion plot such as Fig. 1.1, w, is for some sequence f. Now c'
.  

in envmpletely determined by s". Since CN is
associated with a sern slope. Aigebrairally, the eoplanatin is that if z(n) baa (.( =

nondissipative and c-reversing, we expect significant reflections at the boundary.
for argo K argo. and jal yi I for argo > argx,, then e, must be a multiple root, Irt 1,+ denote the set of uorc-svniable sequences (f,),0 1f If E tf, then it

which we know by Thin 2.3.1 corresponds to C = 0. has s Fourier representation

Cutoff frequencies for finite difference and finite element models have been din-

cussed previously in 01)761, [r73), and [Vif0). s = Ar e-Jf(ldC (35.1)

The primary significance of (3.4.1) is that it enables one to determine cutoff

frequencies by solving an algebraic equation. Another interesting implication is -A solution for a special ran of ihis pr.i.m in sketched im §6 of h-iIh;. hut it appears to
t(- icvalid escpt, prerts.a in some uoy'pioitic ncse <'or example, this solution he-gins by

that although the vanishing of the transmitted wane u a, rises above w, may he be:sd -ui packil sub ntnwpsc sipnsr whim. irfr, al-so i- coIppast support,

discontinuous (the transmitted wave abruptly becoes esncescent, but it. amplitude and suc- a ro nitoe cansot eur.
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fire some function 7 E 1,1- s, sl, and 7 in given by th" Fourier tranfonr t-EFI.EtXfTION I'tOttt.ZM

Gr'e": (iI f, for j > 0
S= .f,e'

t
'. (3.5.2) (ii) f ntinfren (3.5.3) for a known fnctiron A(t)

Fin (i) f, for all j E Z

Hy (1.1 I8) and (1 2.7), we know that for each G, E - CN admits a leftgoing (i) () ror alt ( E I-'j

wave, and at the same frequency there is one corresponding rightgoing wave with Jo effect (i) fines us half of I, and (ii) gines on hoif of its transform. The paatetsr
wane nitober (. = -4 (Fig- I c) (Here 4, soold he taken module 2s.) Lot A(U)

count appears right for the problem to be well posed.
denote the corresponding reflection coeficient function for monochromatic solutions The reflection problew aoq coated] has a nirnple interpretaton Omien initial data
for the giuen boundary conditions. Now suppose that by chance f happens to satisfy

the reflection condition (ft, _n. me seek a dintribation of dal initia data (f,),<0 ouch that son inerease,
the solution s' obtained by applying 'N for all j E Z satisfie the boundary equation

fi. - (i = AE)Ifl) for C E 1-1, 11. (3.5.3) or Q at j = 0. Ir, other words, the dual packet must be chosen so that it contains

rightgoiog oniponrrs that cxactl> doh-tcac an) rcflections of the initial data that

Then by the definition oF .1() f is the nuprcposition or steady state solutions ofr n: hould be obsnrved uidlcr Q. The idea is illustrated in Fig. 3.9:

A f.~ f'u' AUe<~''~;(3.5.4)

Therefore if (v" is computed with / as initial data. then each steady-state solution

eooloe under Q in n uniform rfashion, oscillating according to a factor ewitl, and we F- lta. 3.9

obtain aFurie epe-e-ntian for e' valid for all n;:~i

2.= A I1 te t + Ak(4( flc ldC (I = sib). (3.5.5) "dual initial data0 t > 0

In general, of course, I will not satisfy (3.5.3). The main idea of this section is

os fnllows. Consider ehoouing arbitrary values f, for j < 0 so that f i etended to a Mathematically, the releotion peublem amounts to -.he problem or solving an

biinfinite sequence (f),C . Any such sequence will have a Fourier representation integral equation. let j+ and f? denote the re.tictions of f and I to j > 0 and

(3.5.1). where ow ? E L,[-n, 
I 
is given by E (-1.!). respectively. According to (3.5.4), one need to solve the equation

t Ies+,. (3.5.6) *1. = 1+ (3.5.7)

for 4, where 1 : I41-f, 11 - t" denotes the integral operator

Suppose an extension can be found far which (3.5.3) holds. Then again, (3.5.5) must

give nw for all n. In fart, (3.6.S) will determin, a function {n6) that satisfie CN far (*fj), = ( ) df, (3.5.8)

*lj E 1. and in addition ,itlnS.. the boundary equation imposed by Q at j - 0.

Therefore its restriction to ) > 0 rut be mactly the solutioa we as&. where K denotes the kernel

We an therefoe , detemine the .nletiwa in, of a general wane pueti K +( .-

we ean snlve the following problem:
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Unfortunately, we have not yet made any progress in solving the problem as that Q satisfies Asnmption 2.1. In addition, corresponding to Assumption 3 I, let a

formulated here. It appears that it might be possible to treat the integral equation impose the following condition:

by some variant of the Wiener.Hopf technique (h-o53(, which is designed to handle A.mptiwn 3.2. Foe all with be) 2 t, Q admits exactly -, letgoisg and a,

Fourier transforms that are split into two halves. llowever, the solution remains to rightgoing solutions (2.5.8), where nt and n. are some fixed integers. //

be worked out. It seems that despite the obvious likelihood that there is a connection

between this problem and the Wierer-Ilopf methods or Strsng and Osher mentioned Instead or letting j range over all integers, we now restrict it to j > C Q will

in S0.2, the two formulations are not the irne apply at all points j > 1, and n, additional boundary conditions are then is general

needed that involve v,-' , 0, . , t - I. We can write these in the form

3.6 General formulation; the "folding trick* 0 (3 8 I

We will now write down formally the linear algebraic relations that govern steady- for some integers )-, o-, < co. where each S,. in constant V ni ati The

state solution behavior for a system of equations at a boundary or interface. In doing "0" no the right denotes the null vector of length n, We let Q dnot- the r.lee

so we face the question of how much Ilexibility to permit in the representation or a model consisting of Q for j > I combined with (3 6 I). For Q t he usable we v-I a

dilference model. For example, in the interface calculations or §3.2, it was sometimes solnability owsuetpticn cof Akn. 31 of Cu72 and An I I of 5,011.

convenient to use a grid = 0±1, ±2. ae. sometimes j ,.. was
2.. wsAsasumption 3.3. The wede: Q car he sol-it hoindeli the -nse that :f

better, At issue is a trsdeoff betwere. he simplicity of the general formulation and . . . . . . . . . . . . . . . ...... E, ft ore given, theti i-' is un: 1 ,,el tetertto:,. old t 'stelies

the sitnplicity or its application to, particular problems. Our procedure will be to boond
present the generaitien in a restrictd for,.,aiism here, but continue to abuse that

formalisn later vs convenient for dealing with particular cases. .- n

Oir main simplification will he that ihstead :f treating interface problems as The I:1-norni here is delined of. l2.2 1)) by

iterffcetFproblems, we will rrd-e viert forteally no bondary valae problems bya

devi ce known as the foldi:g trick If the original problem is cade up of a system I1 It = h S I0l , i3 6 21

in Ni unknowns on the ,lt couplid aith a ostem i .'2 unknowns on the right, the

folding trick consist of rplaexing these in the otl-cs way by a equivalent system in where lo,' denote, the vt-toe tvo rme.

Ni + N. unknowns inittlving only a boundary This druice hay beer, used in various It cat: be howtn that such a nctolv it) aMa nit, -t .,,,d only when (3 6 1) has,

papers on nuierical stability. including 'Ci71,ti72.1e73.Su74] It tisnot an inqualified rows, as ve have iinooed (of !Mid ig, Thin. I 1).

blessing, however, for it tends to obseure what is really going co when one deals with let z be ao con .. stant :itisfyirg Jvj I Aceording to (2 5 t2), the gitle

an interface In porticuilar, one miuet remember that tle system obtained ater fol iing solut 00 to (2 5 2) -an he written

is not an arbitrary system in N, + V2 variables, but a 2 x 2 block diagonal system,

since the left-side and right-side variables are uncoupled except through the boundary o' 5 av,j 'i
W 

+ a.
5 

KJ', 136 3

conditions. In particular, it follows that if the difcerence models on each side of an
interface satisfy Assuiiption 2.1 (diagonalisability see 12.5), then that assumption for sorne urtsnt (a,( The two su-n repr,.it.t rlghtcl,, g dt lcltgleg

also hohls roe the lhlld problem.y s f'rnula 1" ;:- rl, ! " i 1, ; "' , n, .,' . , , .' 'f

Consider then the (s -v(levet N-V tordiT e-ri e nodel Q f (2.5,2). We aosume eiaatllt if d o,,' . '6 tt:at ,rI,,ix- ' i, vI,,.,.,u
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\li . che...ntciticoe, known snc in given. oeepi for (a). We can therefore intinial boundary value prohlemn.

,ino C3 136. an ilne ne ystcMio.

-ci All of n.r dineusine in thin chapte r has been ceanteen in pribirroc in nenpace

dimension, hot the sanmr prineiplen apply intnht- naltidlirinsioal ea- Saypase

akecees.ich term in brackets isean screeero depending on z. If we woite nnw freapeta ln aewt rqe, n aenrbr-o "

.C . 4T i, inteideni uon a plane interace at ., = 0 An in the vine~isiinl

a (a~ a,, ~. 1,1 .,o,.- .. ,f problem, the First ntrp in to coloe the disperin relation to drtnn all pinirhe

reflected and teanentotted sca-n runher vectors C(",. C. Since the interface it parallel
thi n theco ecqaainnn take tine Ifnr(f. eql. (t0 21 of [Cu721) to the ove a... . .r,, one eon ice the fact that at eoncen~ ill ha- r -ulnIve,

U l~a'z( Di~i~~lti 3.64)of ,and a. , .diflening only ,v Cn The :.s-nvliion Ci on earh end, of
0,(..)the intrfuer linen. -ciln .nie oceten at various ungltc 'fin radaninn eincnlco

at W rci t in0n, and :Il~ iv rn, r Thin nqitinc reprearis the interface requires than once nek ovi inooc oat t h tn Kcnr gn' inlnit pointing -ay

in cnI o o the genera1 l pbl-n (2.5.2)1, (3.6 1). fron thntrac ier theeienctcnne rtfen tinn ani-,ml cnnnoilnnct

N w, we e -t nic r reflection ercl'oocs lv i previouns seonloon e stee ac cn rcnrtnnne .r uinnav T,, ine ah, nil he ugk~enenr,.dn-n . T'han 5-n
1

. tars fe

ctid ii ieen rnns to a tingle. incident nignal , knit of enurc- linearity inmplies that difrec odels, alreadty urn tine ni h , fins iitetly Lyc hn fratnnea rk w e n

rthe cc spintcno a sars of incideint nigeols will bc thne sum of the rsponren to raoch. eiatiLclnel for itetr prohirtes.

Thcenea problem orfinding relectini oeicienits is threfonre: giave , find al').

If L)' in inetriii, then, (3.6.4) gives the resnlt

ul'i =- (fll .i 1 (3.6.5)

Thinq equatin in the general soltution to the prohlem of finding reflection coefficients,

arid ( DM~)- is an n. X wt matrin that might ho called the reflection cower ahet
matrix. If the problem (2.5.2), (3.6.1) eame from an interfance problem by folding,

then atl describes inoident signals and al'i bath reflected and transmitted onces.

It in hp no means aiveaps true that PtH is invertible. Is certan circumstances the

enamples or §3.2 demonstrate this problem. In Enample 3.1, fone instance, if a- >

0 > a0_ then for z= I one has 0, = Ot = 0, and the denominators in (3.2.6) are

O Similarly in Example 3.41(u), fnr a < 0 nd z = I one has a, = K, = 1, and if

ten is een, then the denamieators in (3.2.24) are 6. Apparently for the wrong nalue

of z in these prohlems, the reflection and teansmsion cefcnients heeome Infinite-

and far nerbh nalures, arbitrarily large. I'his is no flaw is ate fnrmunlatinn, bat the

aetoal behasior of three schemes, a we will serify by experiesent is the scat chapter

Mlemo. c.2). We will see there that the sisgularity af Dl'l and the presec or infinite

refleetin coeffieients are directly related to instability in finite difference mantels of
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Instability anspontaneous radiation from the boundary

Instability refers to the onhounded amnplificationt of small pertarbatins. Now

imagine that at some pair of adjacent time steps a rounding error or other piertarha.
tin happesn to be introduced that has the form of a wave front with (at,s) =(,-)

-<eI" (k~e 413
4. STABILITY FOR INITIAL BOUNDARY VALUE PROBLEMS 0,-l (IA > e)

for some it > A. To be a little more careful, we could mahe v decrease amoothly toO0

near z = f rather than abruptly. Then what will happen an I increases'9 At j - 0,
4.1 An esames (4.1.3) satisfils, hoth IS and (4.1.2), so the oscillation (4.1,3) will perist- At ;A =

From here or, the rcnt of the disnertation in concerned with the stability nf finite the wove front will move at thr group speed for the given pair (cni)- which hy (1.2.51

differnrrce models that ontain boundaries or interfaces. According to the folding in 4-1l. Thous s I inoreasen the wove will propagate rightwards intel n > 0 at speed L.

nro k i3 6). is isi c.,gh to cocritier the stahility of emodvls of initial houndary value Tie initial perturhaticon. sniff, ,um-of-ar- enegy on the erder of ', wnl give rise

I.. t vos Thc-,d, cla lieoy for this -n dvseiped hy Krois, Ocheer, Guvtofsoon, to a grcwing solution with energy n the urder of, t I - Siv omght he arbitrarily
entail (so long as ht in decreased accordingly), thbis uotovts to an atoplifleation of

Ao.hers i the dcade prceding 1972, and %as reported in on important paper

oc fomtafnvo Keiv and .udstriim (ICES') in 1972 jGo72( (see §O.2 fun fur~ther the initiati perturbation hy at nona- factor- The dtffrescehemse w ainrtatok,

rtfse-s) -r faiehr tholcynvets of this thcoey -ee )0u75) and (N~lil), and for a flenrthere.. entt . rightlioing wove that tiuilaf-c lath rhe rfcro /rrrl iF and

sah iati, odoticn to it no' ICo801 Our paryase in this ehapter int show- that the honedory cosrttoo. (4,12)

sit- key factor dctertmitnin itatbility is dlinpersine wave propagation. We will sec that FntMONSfiTATtON 4.t. Of caarsv few raillemo perturhaticons loob exactly lihe

ti e r, ,alts of Kreiss and others arc httiit around a group velocity tent is a disgaised (4U.3), baat instahility castes obout heaune Malmot any data oill eneite this nodr to

form. sotneexten t. One cao viery Otilseitnsa Fit. l~ -I hw coespatation on a

%%e aill being -1t cue hasie idean with a nirnple example. l.et the prolent gnil with h - 1/200, ), = 1/2. For initial data a- took =Ofn 0rrll j ecept

for thy "randomt" nonzero initial saloon

ut s~ nz~g h) (.11 ?I .s ! . " =- 1 (4.1.41
2 3

he given on z > 0, t > 0: no ho odory data at a = 0i are needed to mahe (4.1.1)ris4.achotersuinsltontsepn=1 0,20,0.ie I=.25
orfl p~s-.& Tfohtai.i aliapproiwate solution on the grid j,n > 0, we van specifyFis4.avno-t,-vatigouinattess=ItO,21,01ie. 023

nit-1 names s-a and nj for I ? , asd apply l.F 11..) for s > 2 at poit. j > 1. .25, -5,50?5- Ohviously thenepectetd incoming etotle has bees escited, and apparently

An actdbtocial haundary formtala is thee needed foe v3, 2! 2. Le on pivh the no others.

t-, prl r, xi-p ctaouo Formula (3,2,20), In a realistin eotis1,ttation, trotnation error.% wouti untlly noose a similar radia-
tion oft- rgy ill this nindy front tht- boundary. From (1.2.5) en Fig. I-lamwe know

no = n et ) 1 ), (4J.2) that theme ace tany other rightgeing tttodrc for 1.1- in f-a , any wave with (A n/2

and ask ? er/2 or CA > n/2 nod sk ! e/2. The moede (#c,) = (-1, 1) isl the imiepist
ad proceed to step forward in time. rlanple. None of these lead to instability, bounser, because none of ther satnisfy

(4.1.2).
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Instabillty a - inflnite reflection coefficient

Another way to look at the instability or initial boundary value problems is in

term of reflection coefficients. In Example 3.5 we have considered the boundary

,cr " condition (4.1.2) already. and derived the reflection coefficient formula (3.2.31)

-~~~ ~A(o() K,(~.~), 415{ 1 - ! .=0025
.o5where at = mt~a) i. the spatial variation factor for the incident leftfgoing signal.

LO 6 From this formula it is evident that A becomes infinite ir (and only if) l = -1.
Ily (2.1.8), I.F for (4.1.1) has two modes with a = -I, namely (a,z) (-1,1) and

r~s -' ' (-I-I). Of these the latter is tfe le fgoing one, and by (2.4.8), the correspondinC

t oreflected rightgoing mode is (o,. z) (.-I). This is exactly the unstable mode we
[hI to' t t~25

have identified in (4 1.3) The diffierese schm .e ui rovatble, hssuse thr exists a

leftoimq wore o, rhich the reflecton coefficient u mfinte.
c.5 0oe DE .ONSTAnrON 4.2. It is not possible to observe infinite amnplification in

S- -reflection, but we cal come arbitrarily close. Fig. 4.2 shows an experiment involving
vs-'°\ 2! the same model as Demo. 4.1. In Fig. 4.2a, so initial Gaussian packet

vt 5 i - 0 = 025 (

• ___________ _ ___ .__ . is shown for I = n = 0. As f increase. , this packet moves left at speed C(--, -)
-I, hits the boundary. and reflects rightward. Fig. 4.2b shows the result at I = 0.5.

Ove evs imtvediately that the reflected wave is not a packet, but a plane wave s

in Fig. 4.1 the unstable mode has become lodged in the boundary, where it will

n ]5continue to radiate forever. In addition, there ha been an -fold amplitude increase

from 01.1 to 1.7725.
0.nvc [fly doubling the width of the initial packet, one doublea the reflectd amnplitude.

Figs. 4.2c-d Ahow the experiment repeated with the width .025 of (4.1.6) replaced by

.05. Now the reflected amplitude is 3.5441-just twice the previous value. One can

FIG. 4.!. Instability as spotanco- radiation from the bouid. account for this in various wa)s. The simplest is to argue that the broadened pulse
ary. The initial data (4.1.4) stimulate A rightgoing wave with (f, W) - interacts with the boundary for twice so long, enabling twice as much or the unstable
[O,s/k) a nd C 1. The nicdel is 1,P for . tat u. with 4 al 1/200,x/h)and ., . The sito d smode to accumulate there. A more elegant esplanation starts from the fact that any

finite packet cannot consist of energy at exactly the crticia wave number fo - 0

(the uncertainty principle again), but will approximate (0 with some effective wave

number (en. Eq. (4.1.5) suggests that the observed reflected amplitude should behave

like

amplitude s o

100

.4

It



(a) I = 0 lb) t = fly doubling the width of the packet, we have cut GO -4n in half, and theereby doubled

S- '(4.1.7). In §8.5 we will pursue this kind of reasoning in some detail. It is likely that
- - ", by an extension of the ideas of §3.5, one could also get an exact expression for the

-- 1 reflected amplitude.

e - / "4 Instead of widening the packet, we could have made A smaller. As a generaloo sa s.. as . . .
rule one can expect amplitude increases comparable to the number of grid pnts in
the initial packet. For fine enough meshes this implies arbitrarily great incre-ses in

amplitude. This amounts to instability in any norm.

"i6 . - Discussion

of course not all sumerical boundary conditions are unstable. To obtain stability
.I i the present problem, we might replace (4.1.2) by the eroth-order opsee-lime

02 .4 .Oextrapolation formula (3.2.32),

(c) t=0 - (d) t= .s ,, + = n,; (n, > ). (4.1.8)
(d t .5 -

" 1 -From the corresponding equation z = o and the equation (2.1.8) for LF, it is im-

: - - mee,aLe that now Q admits no regular solutions eacept (K,za = (2,) 1 or (-I-I).

as - Since both of thes are Icttgoing, no spontaneous radiation from the boundary is po-
' - sible. Similarly for the reflection eoefficient point of view, (3.2.34) shows that A = an

/ is possible only for o = -I/xe, a condition that is never satisfied under IS.
Obviously the possibility of spontaneous rightgoing modes and the existence

- I . of infinite reflection coefficients are algebraically related, so our two approaches to

A instability are far from independent. They are however not quivalent, for it turns out

" that there are a number of problems that udnit a spontancus rightgong mode, but

for uhich all reflection coeflicients arc uniformly bounded. To what extent such models

. act instable in practice is open to question, and these arc among the "boederline

cases" o, stability t be discussed in §5. C(haiter 5 is also , ocerned with another
weakly unstable borderline cane, namely the situation in which 0 admit. a s.eady

state solution that is rigitgoing httt not strictll rightgoing. This in turn divides into

two principal subcascs corresp-odling to positiots (,-(f) ar,d (7) of Table 2. 1.

FIG 4.2. Instability as an infinite reflection coefficient. The initial For the retaitder of §4, we will maitily pursue the itesyretticn of instability

icitgoing wavc packet (4.1.6) witi, (,..) = (n/h,x/k) hits the boundary as the existence or a spontaneous righiging etode. lite the reflection eoelicient

td reflects as a wave rront %, th ((,t) = (0, n/k) of much greater interpretation, this one eorrespois exactly to th (KS stablity criteric,. It is also

nittutle. I)ottiliTIg the width ef the paecttt doubles the :itnpliflication.
T h e m od el is 1 .fo e u , u w il l it h l/ 0 0 , x = .5 , vc * 

1  
v u

t .  
re atively 'asy to m a ke rigo ro u s.

Thrttnght this liseusioc cur philocphy tn tint iwitnbhillt1 teed nt ILe studied
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o Iy abstractly, for iI in mainly caused by simple physical mechanisms. By concentr at- The entities (S,,}. (W) ). and I f, in) corp.rate a;proinition of all f the boundary

ing on these mechiaristos we can show that mot CKS-unstable difference schemes are or initial data that together with ( 1.2.1). uiake up the phys-al prbien i t., mo-ded

susceptible to instable growth in the 
t
a norm (Thins. 4.2.3, 4.2.4), not just in the (S,,) inicludes in addition any purely nuterical boundary conditions. Vk, let the

sirieh ls natural GKS snor (Thin. 4.3.1). In the process of isolating this strongly symbol Q denote the complete difference model, (42 .2) (4.2.4).

unstable ease, we also come to better understand the borderline cases for which the We assume that the following solvability property holds, the natural extension of

situation regarding stability is less clear. Ag. 3.3 to ihomogeneus boundary data:

Assumption 4.1. The model Q can be solved boundedly in the anro that if

L - ... , n" E 12 and g" are given, then v
"  

is uniquely determined, and it

4.2 12-stability; growth theorems satisfies a bound

We will consider stability for a general difference model of an initial boundary (c'( < M, jg= .i ( +

salue problem for a hyperbolic system of equations, as described in S2.5 and §3.. For (- 0

roach of what follows we could use exactly the forroulation of those sections, but to where the norm. J1 I, and I are defined ain (3.6 2). /,

rake contact with the CKS stability definition, it is necessary to include in the model In setting up the problert we hav toade three istOrtant teplbe.ions. We

:,ti ihonogenenus forinsg fTuaivon FI, t) and itilioroogeneous boundary data g(l). have left out

Consider then the irst-order system (ef. (2.5.1)) (i) variable eoefficients A = A(z. 1);

a aa(r. t) = A- r:. t) + F(., 1) (4.2.1) (i6) grid-dependent formulas Q. = Q.(k, h(k));

on the quarter-plane It 2 0, where u(z,t) and F(o,t) are N-vectors and A is a (iii) undifferentiated trm Bu in (4.2.1).

constant N x N matrix Let (4.2.1) be modeled in z > 0 by a fixed a + 2-lenel An important feature or the CKS theory is that it extends to problens with these

difference formula as. in (2.5.2), but with the inhomogeneous term added:* complications, and although we will discuss only the simplified problem without them,

we believe that the same ia true for our own argum-le based on wave propagation.

= .Q.,
' 

+ kF(jh, nk), y 1. (4.2.2) Ilowever, one effect of (i) and (iii) should not be ignored, and that is that they mak it

possiblefor solutions to (4.2.1) to grow esporentially with I Thercroe in rewriting theWe let Q denote the homogeneous part of this formulo (i.e. with Fm 0), and we so-
definition or Cauchy stability from J2.2 and S2.5 for initial boundary value problems,

sume that Q is Cauchy stable and that it satisfies Assumptions 2.1 (diagonalisability) we recognise thin possibility explicitly, following Bets. 2.2 of )Cu72)r
and 3.2 (n. ,). If (4 2.2) is applied for j ?t, then boundary formulas are required

to determine valuen e, for s = 0,..., 1 - I, a in (3.8.1). These will be ofi the form Defn. Let hbe applied with homogeneous boundary and forcing data, g s Fs

(3 6.), but with the inhomogeneous term p added: 0. We say that it is t,-stable if there exist constants w 0 > 0 and M > 0 such that,

for all a > o, the following estimate holds for all n > 0 and all sufficiently small h:x 1 s,.o;-e - *5, (4.2.3)

I{-o1 !5 M so rob). (4.2.5)
where pm is s sector of length st,. For initial conditions, we sume a set o formulas -s

aal - 7., 0 < J < 00, 0 5 V 5 a. (4.2.4) lIear 11). denotes the t, norm (3.6,2). /

'To get a higlhee nsedee of seury, oe night ha to represent F in the model in a anar The definition permito an exponential growth f the solution at a rate e-, however,

eomsplicated say. This is no problem foe the stability theory; se (Coll).  that does not incrtase as the nesh is refined,
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We are now in a position to identify mechanisnmn that can render a difference Theorres 4.2.1 (Godunc.R1yanenkii theorem) /R,67; A scsopcords-

scheme t!j-ocstohle The first onaport-nt mechanism is Caschy instability. If the lto for t,-tosbhtl~t, of Q1 . that there ,o.t no strily ,sghtgoirsi geotson

anterior formula Q is nlot t'aoohy stahle, then it cannot satisfy a hosed (4.2.S), and Proof Suppose there exists a strictly rightgoing eagennolQuon &. If v; = zo

easy Fourier arguments show chat then Q1 cannnt ho 82 -stahle eithee. Bat we hone is tahken as initial dot, (4.21) fat 0t C o C 8. the solution au n increoaeor will be
asumed chat Q is Cauchy scahie. ot' = t, foe all n. Since i = n&, chin means that c mill grow tihe 0pl'a. This

The second important mechanism mao studied hy Codanon and Ryshenhii is growth is unhounded foe any t sos k - 0, which contradict, (4.2.51. £

the earl 1960'sJR1671.Since Qdoes no "Lend nto z <0Thisstheoremo theofam directeorestatementectinetermsen ofn them reftectionec matrixtrxDD
1 

of
o'uJ's (2.5.8) with mlj < I belongs to 12 foe each n. If such a sotatioc mists with13:

(z( > 1, then once again wie, hane enponential growth and therefore ta-insstohility. One

can think of this s spontaneous radiation from the houndary of steictly rightgning Theorem 4.2.2 (Coduesov.R1yabnnakii theorem, determinant conditiass).

energy of type (9) in Tahte 2.1, that is, of a signal of the hind ilo..crate it Fig. 2.2a_ A necesosarv condition foe frotfahiity of 1 is that foe alto z uth (o( > 1, the msaleta

For this hind of inotahility the houndary in defi'aitcly involved, and we know that DH' of (5.6.4) is nonsinsgular, i.

the houndary cun coaple various wane components v, (52.5). Therefore in general dctDil'(z) # 0 if (c( > 1.

wmu0:st looh not just 'or on. solution b'''w ut for linearcr0:icutions of such

nmodest. We define:

Delfn. .,tz EC saisf jz 2!1, nd sppoe Qwit F 9 = 0 dmis as aProof. If D.'l(z) is singular for sorae o with (Is > 1,1c let h!!e a careespondieg

homogeneous right rigronctor. Then the function
solaution a linear conahinutiso of rightgcing modes

o" 2~o~ 0 
ii,. . 0 .2.) = u'n~j'a.,(4.2.7)

as in (2.5.t0), in or unstuable strictly ightgnioig rigenolutin. *
an defined in, (2 510). where foe each z, (0.1 < I. Then * is an eigensolssticn of h iiaino h nutv1ybniiodto sta lhuhi snrs
41 mitt: eigenvalsse z (Eigensolutioor with zi < I cun ulso readily he defined, hot - o tbfy ti .,I-sf~abti h~yadi rcie hti
these are naat relenant to stahility fo/ riln to tuhe into acuooat is a nhird instahility roecluniorn, namely the existenee of

to ,ther word, usan so no is a -ii;reinhionatioc of ignals from pouition (7) rf stitl iglitgoing war~nnl:o ithmll 1.1 = ;,I I ) Foe this m- inahe use

Tahle 2 1 in the case J21 = 1, or from ponition (5) in, the ease (a) > t, that satisfies hoth of the .oocept of a g-n.r.ltard eenoatnwhich -u introduced hy Keciss hot is

the laornooeaieous interior formula (4.2.2) and thr hontiogenarour houndary conditions drf. ni here fromn oat wntiroagatici point of nirm:

(4.2.3), (We mill ahuse terminology hy referring to hoth 0 and z-0 as eigcnsolution:, Defn. tart o E C sutisfy zi = , ,uanh suppoe 41 with F 9 p 0 ad-nits as a
as, cosvenient.) We defone farther:satinaIorreolitinofihgiagnds

Darna. A oteicly eightgoing eigen.olution is as cigensolotion consisting

entirety of strictly rightgoing signals. Fqainaicotly, it is so eigensnlutinn with (o( > I= ' =a"jan't, a#0(42)

(position (0) of Tahle 2.11. /, s deficed in (2.5t10), where for at least one t, (n.I 1, Thaeo 0 is a gerneralased

The Codunoc.Ryaheskii theorem now states: eigensolutinn of 41 with generalised cigencalsea

In oalogy ot t, b Iner lier iria weno. state:
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Defa. A strictly rightsoing generalited eigensolution is a generalized As a result the solution grows in 
t
, iu fast as '. Ireily this argument can be

egeaol.t6on ronsisting entir, Iy sir Iy rightgoing signals. Equivalently, it is any made rigorouas, but ror technical ximplicity the proof in App. 11 proceeds somewhat

generalized eigensolution with Is.i = I and C, > 0 tot all i. / differently.

This definition leads to the following theorem, which is new. Let S denote the Whether (4.2.11) captures the rate or growth observes in practice tor an unstable

difference model appears to depend on reflection coefficients. In Demo. 4-2 we saw thatwultilenel solutian aperator tar the homogeneous model Q with s o F a l

if an infinite reflection coefficient is present, then amplitude growth may be observed

$ (',..., -) - {.',..., -+t . (4.2.9) that is proportional to o, not .1u. Theretore we propose:

Conjecture. The bound (4.2.11) is sharp in the #ewe that there er bome t1-
Let these a + I-level vectors be normed by unstable model, Q admittng sirictly righltpep geeroluied eigensolatios lee which

no,.., (i (, - , (4.2.10) .IS"12 , <const. c'n V n > n. (4.2.12)

wish the norm on the right defined by (3.6.2), and let (IS112 be the induced operator However, suppose that Q has a strictly rightpoisg genreral-ed eigensolutio for which

nom. the refleetion matrlr Dl'Dl l(s) w isfinite. Then 14.4.11) can be strenethened
norIn

to

Theorem 4.2.3. A necessary eondition for 11-,tability of4 is tat M.here crsiet IIS112 > Most, n Vn > 0. (4.2.13)

so *lrzouln rqhtgoing peseralnied eigesuolution. If there does exist a ztriealy righloinmp

generashed eigesmeaton, then

In addition to stability with respect to initial data f. it makes sense to consider
((S ] >- const. r%. (4.2.11) stability with respect to forcing data F or boundary data 9. Our proot of Thin. 4.2.3

can in fact be used to show that a bound analogous to (4.2.11) holds for problems
for sonsilel .r y' osgers n > 0. driven by F. Probably the natural analogs of (4.2.12) and (4.2.13) hold also. For

Proof. See Appendix B. I boundary data, however, the situation is different- we get growth proportional to n

The proof o this theorem haa been deterred to an appendix rot clarity here. regardleso ot the reflection coefficients. Let b he applied with f m- F a 0 but with

However, the explanation ot the result is exactly what wa discussed in 14.1. If the g # f0. Let S.) denote the operator

initial data onsist or a narrow signal at the boundary of the form of the generalied

eigenoolution, then as time elapses it will move steadily rightward, as suggested in s -s : ' (4.2.14

Fig. 4.3" with norm induced by 12 norms for g and v" with respect to I and z, respectively.

Therem 4.2.4. A necessary €ondtis for tl abIhl sf0 with reopriel to boad-

t I I ary data is that there eot no strictly rghtgoeng evnsf oltsen #esa'salued es.es-

C > 9sotiosn. If there deo es ew "Ah a salwiso thesn

|4-.1 " f(t) "- -. 4.3 is 4)l > cont. is V s > 0. (4.2.15)

tO? lOB

II

FiG.~ 4. a

0(l)
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Proof See Append it B. *i in the, cae in which Q adnito an rigennolitLion ,ith =z 1, hat in a iuain

There to little doubt that as with (4.2.13), thin bound is sharp fr the class of i epc otebudr

strictly igbtgoing generalized nigeosolotions s a whole, although raster growth cancodtns hievr Ta.21imlstatn utexctlgbicrwh

with in,

be otaind inpariculr caes.A stcikiog achicoement of the OKS theory in that it obtojins a necessary and

snfflcterst condition fr stahility. Thin io aecomplinhed by entending the stahility

conditions of Thsss. 4.2.1 and 4.2.3 to inclade non-nnrictly rightguiog nolotions, and

It is satural to ash whether the growth rateo (4.2.11), (4.2.13), (4.2.15) ace severe by ntrengthcning the definition or ntahility. Here in the sea- definition, which appears

enoogh to caone teouble in practice. For the lattie two eases (linear growth) the ast fn. 3.3 in (01,72):

answer in clearly yes. Whotever the prohlem being soloed, eightgoisg radiation at Defis. Let Q he applied with hotmagrneoos initial data f =_0. We nay that Q in
the boundary will tend to appear in these canes, causing the computation to give 05(5-stable if there cxint eonstatso > 0 and At > 0 nueh that, for all a > nso,

unreasenahle answers. An a Olinimutn it will result in railore to converge as the grid thy follow-log eotimsate holds, far all itilfeii-tly nrmall hr

it tefiroed. The soroerical enovies of the next chapter will illuntrote these nlaimn (nee

especially Figs 5 26, 51.? 61.,Pot the loustion of stability with rnpeet to initial data a-at I i" ~ + uk
is the tonite relleetiover01elfeet ease (4.2.11I), however, the nituation in mtore delicate,. -n It t3~t 1 )

We wIt! giveenVitlenee In Chapters. that the instability here in qaite weak is practice. < 5 f~~ a e :,

The re in another itritortaot jastificatioo for considering the hind of growth we- kIso) 6 .

has e deseritt anstabte. which is oftronestenioned by Kein That is, if a second I1cre t = o an,? I!,, and j 11, rleirte Hiit1 /*.nar deli ned by

hountd~y it introdaced in the prohlemt hying inodeled, say at x = I, ito elfea-t way

he to connert at' algelirtie growth rate to exponential. If nne hopes r a stability h)-Sk 2 I!. : = E , (I2)

theory that permnits one to inestigate the stability of eaeh boundary individnally, it '=
0

t-
0

follows ttat a todel oilth a strictly righitgoiog generalized cigenn-tluttion will hoce toTi L'si i qiefhdig at rera t i i, nodr

heI,i~iiri ttntable hlowever, we will discuns peohliis involoic ., ILc bouneafies ()[nie tebud(..)n--/ ~ 1rte hnf ro
,at length in ft anid §6.5, and eo...ile that the euposeuntial growth -.vr. only if the isa unotnte (t2..'4 th heniavin 1 t.a.t I ni, by ai 

1 
ther han The

rinotible houndary has ain infinite reflention coefficient. K hrnswhc rb.d, .Fui t-fo If 131,-iklf

hut tot F. then o would ho alr1e to cue,?it to . be. i;I ian.. ri .ainn by

ttreav at the din..rete aaor o Iyohaeels Itritivile. The -nnirto in the ther

4.3 GK-.eilt ionb in howener ito so cony;t, tetbliin ~~r~e li the nie,,lutir of

Thecrn 4C2.1 at,l 4.2.3 give necessary hot not voificot conditions for stability, a faetor I/h in- th lright hand idle of It 3.1 t V-I the it-..?.! vif a. 1 nen ,s f

Ar has be-en stated, we bieliese that itt practice these conditions ore wore or les partial iPileetiarl eqiuationt (on ppsed to lilfi ecenslen1 ,.e ,ork, ttt Uorl

sufficient alno, at leantt fnr stahility will, respect to initial data, ond we will give venneetion betweeti f and F insbknown to boll (1tu72(.

variouen esatoplen in sripport of thin tiew is 15. Hlowener, so estimote on the growth (2) The Pouitr tranoforni, atis'nientn u-, also rw1 .r- le irtv .ita o re

u .is uvailahlc to woke thinspnc pteiso In fact in at least onte (quite, contrived) dresy fatr C on the right as well at t i, t. atid r to., -. ni trrat U Ir

sitrition, these ontditionn are dtrItrahly ton weak to ensure fs-d-bility. Thin ( - L.ihe 142S.(1.3.1) petrriti eponer I .ot o h- it.-
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(3) The boundary term Ile-inII, gives special weight to the behavior or the signal niut hr introduced through I rather than f.) Now as t increues, each wave

solution near r = 0. This is an important point that we will discuss below and in 15. front in [.2.6) remains stationary or moves right In either event the initial signal sits

(4) A valuable property of this definition is that one can show that the set of esentially unchanging near the origin. Because of the boundary term E Ile-'ov,I

CKS-stable difference schemes is open in the following sense: if Q is stable, then on the left of (4.3.1), this stationary behavior can be seen to be CKS-unstable.

a perturbed scheme Ct is stable also, provided IQ - 011 = o(k) -, I - 0 (Thin. The CKS theorem has a simple restatement in terms or a determinant condition

4.3 or [Gu721). It is this robustnes that makes the CKS theory estend readily to (ef. Thi. 4.2.2):

problems with the complications (i)-(iii) listed in 14.2, and also to problems with two Theorem 4.3.2 (OKS stability theorem, deteen nt condition). A

boundaries. necessary ad ssfient coudition for CKS-stabilit of s that for o1l . with) 1. 1,

Because of (3), CK-stability is a substantially more stringen requirement than the reflection matct D
I'
l of (S.6.4) is nonssigular, is.

f 2-stability. However, it is not known whether GKS-stability actually implies 
t
s-

stability. Kreims et al. conjecture in §3 of )Gu72] that it does. drtDl'l(z) # 0 V jz
i  

1.

The main CKS theorem is like Thins. 4.2.1 and 4.2.3, escept that the hypothesis

of a strictly rightgoing mode is removed and an additional disoipativity restriction is

added: Proof. The determinant condition is equivalent to the condition of Then. 4.3.1,

Theorem 4,3.1 (GKS stability theorem). Assume that Q is either o-disipa- hy the nme argument - in the proof of Thi. 4.2.2.

tire or strtetmV nondsssipatiee. A necessary and isrsflietl condition Ior GKS-asilit1  
. . .

of Q as that there rout no eghtgim esgensolution or generslized oigessolation (i.e.,

noe tgteseltion or generalized etsensolution with Ji 1). To summarize §4.2 and §4.3, we have shown that unstable difference models

Proof This theorem is equivalent to Lemma 10.3 and the sentence following in of initial boundary value problems can be recognized by the unstable steady-state

((;u721, solutions they admit. If Q admits a strictly rightgoing solution, it is unstable in t

rhe proof given in [(;u721 is a lengthy one, and to prove that the eigessolution with a growth rate orat least VG, and probably n when an infinite reflection coefficient

condition is sufficient far stability, we know of no alternatives. But u in Thin. 4.2.3, is present. If it admits a rightgoing solution with no strictly rightgoing components, it

the nercsoity can he established by arguments of dispersive wave propagation. We is still unstable according to the GKS defnition. Since the definition of "rightgoing"

have stated that the essential feature of the OKS stability definition Is the integral for wavelike modes depends on the group velocity, these results demonstrate that

iaong z = 0 that it includes. The following argument will work for any stability group velocity has a fundamental role in determining stability.

definition involving such a boundary integral. We have not mentioned stability for problems with interfaces, except to told

Sketch of poof s necessity in Thin. 4..1. As in the proof of Thm. 4.2.3, suppoe them into initial boundary value problems. lowevcr, the results above unfold easily,

o admits a rightgoing solution (4,2.6). Once again, we want to construct ann initial and we find: an interface model is unstable if it admits a steadtustate solution that is

signal censisting or this solution for r near 0, cutting off smoothly to • i 0 near a = outgoing from the point of mew of the interface (leftgoing on the left, rightgoing on

as in Fig. 4.3&- (Since the GK-stability definition involves F rathe then jr, this the right).

We have also not mentioned the "perturbation test for generalized eigensslu-

'This ia Assiptlse 5.4 of [G.121. It appears to be unknown to what e.elst this retston tions," which is described in various accounts of the OKS results, but which many

iee-y r. theert . go through. We cojeoture that o igoaliable t ihisa ese practitioners find mysterious. This is nothing more than the perturbation lest forassiffl, at k-ess, it se unnecear~y. Oh-et. mlb of1" 49bi sho this I. &a fr .9 t "

- - distinguishing positive and negative group velocities that was described in Thin. 2.3.2.
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4.4 Stability foe dissipative scheme, ar rJl lc-eior andli-- cent errJl r~, hat ha-n .!l-, Jr,,J~ar :alor

Alt or the staterments of the pant three sections apply to disoipative forrarolas, f i roth1,iniD0-n:n JK61.069,

for nowhere have we arrssed nontlissipotiolty. Ia trarticuar, recall that Thens. 2.3.1 ad '4 tt t,'k' o o - .d[.-ii~o s

garaantees that the groop veloeity stakes sense for any mode with fill = jol = 1. even d alnvseu'6 tfrittliY

if at to adrraatted by A drssrpotave farmsula. lionrever, at an wanth drseussing dassapatieNsipit-tQi iiltiebtrn ee 6%viipt

models explicitly, boh heease the stability criteria ean be simplified is this vase, asd Ti -ii~ycmsl rl o ~ii- ~-elha ~ 11 rgwt

toevoone dinn t odes aepanaurosponmodels aresreardngvotoratityanpoisipttoof,1coofoolos 41 hlreifarding there I.%validityio thtandr

scope of the groop velocity approaeh to stability. 1
This ctaoifta latiera h.,,n raJ recinra .1 -- rarar - tieJte it, the literature.

Soppose fiest that the interior forrmata Q is totally dissipative, which means that TI- se reosulto a araly aJil to, at. oJca1arralino1. don- one eer d 11J-ip.1t1ity
(a] = (-1 = I in pnoible only for a =- z = 1 (§1.2). From Tahle 2.1, it is coident i drt eal od~ict- -i--gI. -tdr1t(K
that this rentriets the wet ar rightcaaiog solutionrs admitted by Qa apart from or =ttta i

x 1 taa the pornilbititic Ja1r] I > ]o] anal (-a] I > (v(. F-orr thel lefitions of oaa0 t2ha'ortatfcJ.ana.J

eifa-r'ooti a ndararl er;0aired eigr, -rratwiar iv 54.2, it faattwam tlinat tiel C21 theorem

IThaan,. i .2. It ohlm tinl inning op-ial for m:, r,'et h'., a' ba'ra I ~ a f;,, rr IoaJ a ar, 3 JJ a~ar I i

Theoeem 4.4.1 (GAS theorrem fo' totally dissipatave schemer). Let Q hr tlcly -, k - a Jt .J I. I -a 1t t ), Jrte 1, ,,f It t. iJ. a ta- 3tt 1. rnal r

daorapati-e.4 necesay andt nffieaeoa condation for GKS-stabatity of Q . that the -acr a-,J - ndw I''JJJ:JJr att~ r or! Ire LV.I 1-rA Alop.

foltoaang condat-oi; hold: h.I. t aft Qorrlel.-t~iara Jar!thatJJo-aa' Ja rsarp-

(a) There are no (raghtgoan2 ) eagensottsn atsIz .-. a 1,1 Q t.r hta f" . ta~ara eJ I. or Il -. 0. t oh L'a afa at .:.JJt tang a -Jira'

(at) There are no tragbttoant) generotized crgsnsoltnsast snvole the n-ave jatar -JJJ .a : 1v~h I.,r:tteJaaa~r r . f har It l~art.-I)t 1,A aly

mode a 0=1. j 0tJ'.V.t% %~aoJJtfataa %rA~art: Wtt.i.Ja, ao'~clotheslaran

tirraitkar rt'-a.d -a arrJlaoocotata-itJfrtIatrroremsi~t- sftl~ b1'2 giJe J)fJot' 'at aorrn orat t1 'a2. l ttta~aCtaJ rrl 1~ aacra

ra'L ara-tage of
1

6 (liUtt-rraaot one Thie. 1.3.1 is that it -'raales one to limitraeta.ar atlIlata
1

Iaaeataaa-tJJJatiJr-lstatorthtr'af

rhll narht ranscabte Iar -~ rrne to the sinogle point a 1.a= This point1 72 JiJJ t -'r at J"ae.
ir niat,. rfooirsc. ;o that it or-otrorrds to the partia dilerierriol elnatio being

roodr'tri at hener Q2 as a c arnce pproximation. Theterne one is tempted tio

rca rite conaaoe (ii) abooe as the rarraitter that Q is consistent with a well-posed Ira aalitaae tar thc-, tar Oilat raab'n aaJ sot"Jtt e r

iritiat biararary valor- prohbea. 11-c-,er thin in not strong becgh auose, ltor riraarn ' mrt rtipinr1aa.O-t'ti . ararI J'aat r a .aII ...... J~ra~laat

en , ana at ifllJ pareiritt ofas aooltato rightgoiag sotlution eaaarirtisg of some esergy lines. In ratcdart - Htr'sJam iat art atai ab- lae'artrrara.r~raaJe

in the raer = a = I plns nrldiioraa energy in a -cmpsset witha a = 1, 1.l < I oft tiep (an) ar TIhia. 1-. ra ba- Ja r th.,i' lralulJ a!S rgaa! in a I-ar,

A., raaera honed it: 50 2, mcc of the early work on stability foe models of initial rio ate iralaea i ara rtaa'aia. rarsrO It- :,pa r , ma nbmr-Jl-Jai takJog

I narr natar peohr-r asa confined to the ease in which Q is a two- cool s- fr- itrera to that ats a rotal L "'l' b)r~ a 'aIoa- t.a'-ta'a ta a

atansipmataoa rroula ta-rc by lThm 2 2.3, totalty dinnipatise. Therefore the psint arddta oaar; U.OaJJata - ow -I.ata,<'~~'tar'~',~'Jar'

I rkr' in a rpa mat oijtnoi, a-c ira these ppes The reslto dorined in themn eaIa, M)t if 'nre ma:, it, rtaa- J etc 'll.. 11 'r. aaaati., -1, ~t.tJraao
IVAII



implic stable" becoiri less ind less reliable 1: spaoe extrapolation with t-reveraing formula.

An eximple will srlier to show that even for very simple problems, oe can devise let u, = ut bc -odbrd i. a difference foruia Q fee > _ coupled with

unstable totally tissipatise models. Let u, = u. be modeled by LW with h = 1/3 (qt - t)st .rd,, apace eatropolatten boundary eonditann (f (3,2 29))

for j > I. together with the boundary formula S : UJK - l)"' , = 0 (0 !5 j _< t- 1) (4.J5.1)

,
.
0 = n + h(c - tj. (4.4.1) for the boundary points j < I. with q, _ I for each j. For the case or Q = LF

And I q0 = I, we showed in J4.1 that thin scheme admits the unstable strictly

One readily verifies that this scherne admits a strictly rigbtgoing eigeisolution, or rightgoing mode (az) = (1,-I), and the samne result has appeared in [Gu72. (61 and

Godunov-(yabenkii type: a = 31/27, K = -1/3. Numerical enperinnets confirm in various other places.

that any nlution attempted with this scheme is rapidly obliterated by moie growing lere is a natural generalization:

at the rate (31/271". llowever, note how contrived the condition (4.4.1) is it would

iver be proposed in practice. Theorem 4.5.1. A.dn consistent t-rcecr.ng difference foro Q for (1.1.1) s

Si, tin 6 2 atnd 6 3 investigate the connection between disipativity and stability 12 and GKS unotbi in buorh tton unat the boundary conditin S.

fuatlr for m. bouilary and oterfoe problems. Proof A.unie first a > 0 The nawothed wave t, = (-)' satisfies f or
an) Jil), and if" Q in t-rnersing. it also satisirs Q atd has C > 0, since by

.. i.niecy r7 = I nt satisfy Q with C = -o < 0 B) Thin. 4.2.3 and 4 3.1, the

4iidil in therefore ft, and (KS-unstahle For a < 0. on the ther hand, vi = I is
4 S Some generl classes ef unstable duff'erenee esodldh

itelf ai, unstable rightgoing mode (It, thin cioue the model is not consistent with any

In practice, a we have mentionvl. a large proportion or instabilities that appear well- ined differential equation.) I

,n difference models ofr initial boundary value prohbenis are nlot eigeololutions but
Thin is an example iv which the reflection rurncient for the unstabhl nude in infinite,

giiirahc edgensolutions Within the range of generalized egensolutiesi, it turns out anwao ponted out in (4.1, no thut growth lihe ft.S"T 'ourt. n ear he espected.

further that in practice, a large proportion or instabilities involve simple siwtoothed
Thn. 4.5.1 applies even fo0r scheitirn that are c- hut not t-dino*ipative. curb -s lFd

waser with a = - I and/ar a = -I. (Analogously, wben a difference model foe
or varius analogous schees consisting of ]l" with spatial dissipation added. The

an initial -alue problem is unstable, it is usually an unstable sawtoothed mode that intahility if S with L.Fd boo been potned ot by Culidberg arid "radtrir in Eantple

dominates) As we naw in (I, sawtoothed modes are by no means the only waves 4.1 of" Iof81] One eon also readily cotend Thn. 4.5.1 to Irrersing formosa is

that tra.el in the physically wrong direction. The reason for their predominance in

practice is that other waves which do so, for which 5 and A have values on the unit oreitintoth arbirar telutdoconda snditiLiis prved tare at leat areth order ucrurate sod confined to a single time evel.
circle other than ±1, do not an often satisfy the numerical boundary oaditions.

It woo with the significance or sawtoothed parasites in mind that se defined the 2: "one-sided leap frog" with t-reversig formula.

concepts of t and lecerinp difference formulas in 31.5. We can now apply these Siiilarly, it has been noted in various papers that if (i.tlt) (h tiodcled by I.X for

definitions to delineate ame general classes or unstable difference modeb. All of the , I together with the boundary condition

theorems in this section are new, but they are straglitforwaed generalisatios of well vc*' = - + 2xa(vs7 - e),

known esamples. One purpose in colleeting them together is to demonstrate that once

the stability question for initial boundary value problems is given a phydletal meanin then the esult is CKS-unstable. As a generalization, consider any set of boundary

it becomes natural to consider difference schemes in groups rather than one by one. +ditisns v,"+' = ' + 2kD 0 < - I, (4.5.2)
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where cacti 1), is a sptaliilfer-eeosperator onsiitntioth n)/Ox that involves at T iiLit .as) .... igL i. nii' lie f.i v.. ir. [e,.i L a ha i ili

roost jpoint., to the left of center Wen obtain just as above isaicli ai isotig in..' tiiti ic.O H'e I -i -- i- .g arinala. nit tie

Theremsi 4.5.2. Any consitt .. ren ..srv differenvce farrsal Q for (1.1.) ont l b ..n -h1cen 1ns ki :k'in~ti. ! o . "it. (ta loa ot.- 1) or

t,- and CKS-aastable ins combisnton toath the bounndary icondition (4.5.2). "he'..t treatI the pIvint of 0..u of the egil-0ti ni iti'ra at r,l 2 athe linarr

Proof. Same as tar Tbm., 4.5.1. grot
1 

of thin outgoing wane moulit [,,oiveti tii en pon-eitW hy ectnsi at pint.

x, and 
0
,t3 eaco if the coefficienits l, id not I hange from one time step to thn neat;

3: sign-changing noaeffiniaentat monallnesu instatbility the fact that they do niahes the growth still more rapid.

Consider the coefficienit-change problem (3.2.1). As in Exaple 3.t, suppose we For ant interenting sudy of a nonlinear instaility with a more nuhtle eaptantion

model this on a grid (jti~nh) by eonsistent difference formulas Q- toe i ! -1/2 related to inane propagation, we the poyer [H,81) §epea 41) by Blrigga, et a..

and Q. for ) > 1/2. respectively According to (3.2.5) or (3.2.6), the reglection and4:-astrih uhrerenet
transtnission neli inn will hecosme infinite in thin problem ir there esintst a steady- Cnie h ~ ! p- wa .. l ~ W- -'ul

,ial 0 -ltiis in which n = ni. that in, a uniform waoe that is leftgning 0n the left 31 1t r on m-mdol -. J p- ih'a'tph
.aul rthig-ig oi the sIght If ani a -= ngn o,. then mast models do not admit nuch 31, in whichiadhce poin t iar o-ils vtc f~ . .!, I apii aIm sped ntp the

-1 wl. in tea' 10 Labk~t - - f n - 4 n .. interfa-ici-Mroriig ii (3 2 23),1 . l -b-o- " u.-ooo ifi liit. -ctoeotioit

The-ore 4.5.3. Let (5.t be 1 6 modelrd by conusient formuast Q- and Q, aif thins eniuns aecqlu for al. h, h si .i-l H- [it cIest). Wni m

indicataboe If. o > 0 > a the model is (2 and GKS ianstable. Ifa- < 0 < in euii.tirtao o aiouu-u.Teful.i. luslg-irith setup

a.and ) and Q)- e bath , 1-9eeen or bath I reesnthe model us again- ou2 '- ihat:

and GKS sntabls.

Pocf In, the first -nc. lie eoitnt functioiin c t E ia an ootgoing mane thatTho-4.. e(11)6,ocd1 5p 1

farolo Q- on 0, = j h fiar j S -1 ",ciqlcd -!'i. on-& rtr foas Q. an
:M i it, dif~ei, te mdelis q.,"le b Ths. C.3 nd , = ysvh far . with left hond eatari fcc: ,tic te, sea' the interfae taken

i I lii stra s-coPnv the saro- goes far a apace or time sawtooth (-I) t ,o (-It)". where nee ded fro ptots, sth a th -5 - I Ifn o 0 ald -n iee, the insede is 1,;

and GAS -itate. 11. a 0 and ci scne and nosy Q and Q.-n eneig the

fliiccetr i-sample is related to ceriti hnom. eaimples of nonlinear modri iu atoin 12. and GAS anctable,

instsilit If the [Buirgers equation Proof lit she eu- a < 0, en iitr, a wane

as no ea, "', = 1l-tY' J (1.5 3)

insiuusdt I-o by the leup fiog whe- ne 00, thin wan is costant and ha-nC=- , >0, len. 0, it in mantotlv

anl haL C < since Q- insacif tluui (I ,.1 3) otiWgoirig in both sIes- of the

- e5  he'(C~i -n~t~i)interface Moseoacsifssosen it nlvnoysanistun- It, ie ~iiuli fiisinlao, so i

hate ieettiility. In the ease a > 0, siiu tlily (4 5 3; be ( - I)'.
then exysonential]) ocowing ntahilitirs acmse that arc macbed by osnillativons of the

fine (Foi73,Kc73j For 11-. (N, od ,itany othes tos1niiln. Oit nayot-,1Ii, on i.ui iiilru turn

no , <0, >~ >0, 0 a-l1 u,nodid~ (noetul Iligor. 1s),i iiiiiii.i Ii,i
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4.6 Ustiabile diff cieeshee in, nseeseal space dimnensiion.s ii = , +o -v x. ot > 0. Y E ('-m ).(.1

In the ntudy of %ell-posedneuaof hyperbolic partial differential eqootions on a Thei nilctiono to this equation eu-tir of functions

region wsith a houocdary, problemns in one space dimension art easy to treat (by the

cmethod of ehinroceriLiea). bat in too or mre spone dimiennions the situation becomes u(r. Y, t) = a): + i.pY + 1. 0).

core plirated Fly a mucltidimensictnal problem, we hone in mind an equation dofloed

on te ddinesinalhal spae z > , x E 1 fr 2 ) d.Themai thoryThat in, information propagates with a nector nelocity (-I ,-1). Since the Howm is

avaiabl fo ths -d~ii in imprtat pperby reis in197 [K701 byoutward acrons thc hoondary r = 0. no houndaruy conditinon. should be givn there.

teelicciqen thon fnied the basinso the GKS theory for difference models yablisbed ['r.mliiesoa -l~ ieti,-. n§ ht eoe .

two c-or loner Co721 Lle the stohility eriterio that we have dincuonoed in 5§4.2 4.,nme etrf n h ru pe gnr~ist ctrgopvlct ie

K, r-,n n well ponecicun ertericr, ir a determinoont condition clot reqaices. roghly. by the grodient

that the prohlem od-et no nyoctircicue rcghtgocngK signals on the hoandary. The (C 4.2)

,I c-n, in c hiat r- tic, iifferernt,al ,ruiaton, 01ce ilneotiOn of whither a nignal is 11) the notner arguniiieit on in Tt'ircin. 4.2.3 arid 4.3.1, ono, con readiily obtoin the

richtgi og dIid ol Cu1ut tl,n~eonjiol gei-ricj effects, hot dam not inolve a h.. I-m ntabilil) ,.Rot: nf a fiitr differc model! of (4.6.1) admits a ss1,1i-

n,,o 1-1.1 y -1-0-c . rce t,..itro in nooc~lineie. Sirnilocly iti ill 1kown cor-ieiric of n-aesl -it 9-op ,I-oity C pointig into a > 0 '-. uuctbt'__> 0), it

cat. ~.eccetciccin cn,c than one cpa-c dimension ic generally ill-pored . GKS - 1nsabl . h es ev has C. > 0, then it is alsof1.- unstable. asIA . reoMt

noeocni for p i 2, as we l-e seen for initi-iiffetenee niodnis in one space rate at least proportional to V' We outl cut goI t ie troubhlelire o' den-eloping tie

-o, §1 4.-1 0i -t , don ti, geonet-rfounig rather thto dispersion. rttiiil definition., in thin thi-,r,tm. orc ofcviticig dims a prccif, beoause there see no

Cro Sic I irci. ccdels 1c, twc or m-or dicni-nnsiooa, foeuing and dinpersios ideai, ciccolke thait mete ot ce-ct iic one dimicension

,(1ce a, a-,,-icccceI Tlcecorresponding ntnhility theory has beet, late in appeoring. An an eniple. nose (1 6A)1c trccilel,-, 1 !he eat. frog formola

-m e~It. luin frnc the one-dicmcnsianal theory b) a Foarier trasirform in the

carcahies I.. , sd. but them were never developed hy Keelss, et al. See asn the paper v"5 t,% = "t~-eb~ + e.".i c, ) 146)

0in9i11 by Onher Mlare recenit results in this area are doe no Cnaghras jCo8O) asd The dinpeecion relutioc foe thin seheme is

erpecilly Miehelono I81 [loth of these authors consider only differenee schemes

that satisfy a dissipotinity condition in the former ose, one that is related to oar sin k.c = -X sin fh X in 7h,

definition of i dissipotioity (12.2),

Oar parpose in thin seetin, in to point oat that the wane propagation argument.aho jadfo 462 hr Uo h ru eoiycmoet

we bane deneloped for one spaee dimension pronide inmiediate necessary conditions for -. coeCh. C = o - oseh

stability of both dissipatioe and neenlisipatine difference models an seveal dimensions, c- o

noo. An nasal, these eedocie to the ideol nalaer C = - 1) for (h, h kc- 0. If w- look at

parasites, as the other hand, we mee that a swtooth form in x or Vnegates C, or C5,

respectively, arid a sawtoothb in I negates both. Table 4.1 satnoimeises the situatios:

We will eclner the discssisn to a simple class er examples. Ahachasel and

Cnottilehb (Ah,7O and Aharhasel snd Morman AbRl) hane studied the stability of

vsrioas difference schemes fee the following problem in tree space dimneocies,
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Ch,,lh, k C ai.~i.'t:,'~- n:'':.,- -ia-

(M. ) s) ( ,-1) T .. 0. .. asd Lrr 4, 0t '. '.
4

" .si C' I, -I. t i', - ' . .trr i''t ",
) 0, ai0),(,,0. -0, ' 1', 1 '0 11.1ti u n f-reversing ; L.[' .1,:t wl ,cr , en 2 ,1i ta

(a 0 0) (e n) (- 1,+1I(df) (er, r,0)({0,0,sr) (+l+t) .r sn :ti t tt a with 'a.) -II (an all arh d grop r itr C II
I ,

' Ct :, also

Thus sawtoothed paraoites tan traatl in any or the directions at 45 to the grid. If for I < < d, with C: 0 if' ', ?t 0. Then Q i t-reversing. !

any paraite at rarn (b) or Jd) is permitted by the oundary conditions, the differene
strude is untable.Now let I) he a enaist.rt djiffenenne todel ofmodel is unstable.a

Abarbanel et a]. ensider various boundary rormul-. Four of these are space u, =ra

enrtnapolatts and skewed space ert-spotos (cf. (3 2,29)), -

.5-, i{h - 8 5t-,.r -0. in t,:ri 0.oi l-'.,:) fot2l< t _ . a .iiili ,. bai,-.rn , iii,.ii S,

SS, ST. 46' b ,,niendect in i 'ilriou a-r 0r' 'ie":' .rlg'r."i . l in t,
SS iA, K, - I .' O

-- I ,pacr !-,s nrapolaton l tkd ,pae 'ts so:napolatrn (ci. (3.2.3?}), Tceso 46.1.

ST /' ' i 1)1" "0. l;n:li--:tn-te a'n-"ct n gent-al ri' /

I'' A'. /I, i A, iir r t, 9i nd'Ifry.n inr atit l u-y coit..ing sign. a t 2
- 4 ' , A . h _,: vI J ,- - U t h T h - ,I t P , , S S Q I ~ a P. u '.a .C K Q :1 e , f* . ,

fiqd ,,~r TAb 1,2.,:, .o-n ra-. r -. t i- 's 'c' a:t - tb l;; , .'bln f.-lI S-lr't t,'Iln t oh"~ sa toths Ti Ieuts cltl'. : ' a ,i :.t n v. t/n~roe 2

'et n--:-g. a it ad.o a, e¢t'n t-.': ft- al ,!na.l ten 5 2. I

'tan/n so t te ths trstable sawlooths t.,r 't .'t, €) ,l:i ,= , t~rh* ',Ia ,,,H!,:T, ,r. ,".'

'0. II. lilt. '.0) til 0. (0. ril ' I E 4.2 1Wi'N (I-l ,,rll' ' i ee "' 'n 0 il; 'ht ' ' in .'.-.' ..

5 'It ll-n) (lll0 0, '-,0) ' :',,ii tai i i"r ",

atil ia~l'niiiK 'ncn:':
sT (:h 0 ,, '. . "T,!I ml ," I1 t I, d I, y

N: " [ ,(. O !(0 . il~ z 0 ]i r, d i ai:iI a n . angti :. ,ri sr , 'rI t ' -ki

'I- ' S and ,T -t a., ir.li,15e i -:Ih L" It ,' t li -: 5')'. olil ! thi table b

a''a-Stc i'r'-roi'i'l' 'taii'lt'.-'i 
....t.,-'.',,--,n.'h,,rii:5', i.t her. I ,

tt'ice ill rcc'- ' t'' l~ art, < ('ial'l (,,r",0 ', " ro- ,Ihetna irt t' e eactstrtl-lcwitli .- Oz = tlte a' rS.c'

. li a l ,., s 'o d p- I ] nd are

IDetn. lrttiicr-'aia'f~t-ni.f ttten'rin rlil :-inr:itinsm S'uiitrtc thnt Sil,''i'tirl~r':. ,' "~i
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order I, ee'eeotr.te', hi h'ii-lstty of 'hr oeLil I lt ir-'u bneeeet.rv

v-ea - rl eri.,,is aie t oreachl oeleie t,, tlie Co neesoe Ini ...... t I' t i t han not

tenc ponilili to he rigeere lihe., aeee our coe 11ie' o hl bespressed a- a series

of 'ohrervaioes.' not theorems We do not atterept to state ther ,lbs-eatios

precisely. aeee we do not clainm that they hold as stated for el pasoihile erohiemns. W hat

5. BORDERLINE CASES AND THE DEFINITION OF STABILITY me do (loti in that tie ebscr-ati-e apta re sone eef the fteeamretta teerelasiitos

that caue itntability, and thtat moasof themr couold probohly he made rigorous, after

.appropriate modiflearictneeif details.

Is 55, 2 aned 55 3 we' eoeid er sinuu ions (0 and (2). respectively. 'We well e

51ln- -i.that all of theor leiireesl tee ..... entaleeie tsbhv stably in -nee nwpcts.

le h.el ker I welhaeemen that .e diffete.....ciodel Q of an ititiail boundary S-6roiote i I eeseiee tee tr...tre :c .efe .....ialy," a hirohette 0,,obitinig t .eth

-10t- -i-elcseli one ileitin op aria degrees of instability. At one le.er, o',eIe fe2li.eh lien f2 ole , lehi-vrtnbl)lie r, ees' all tee-t tastlii

aeee e'... eclh rghfg.,-figesort (i.e. 1> I a Goduno. reet f..udi fe iii V, "a,, d te Ihe c:6,it -'e!,e .ne-oftr !h behpter. and oif

>,ers,.il~iolete hwhaid green cponeettielly oitb s and is therfur onaale lb: elnn'r1e-i. *eeeeIe beirel'lo, even -dl 1 , -1 I', -f n t iy for ielel

- e.-e tee'd-re. iTb on4.. 4.2 21. 0,s it may deletit a sitreely rigoes h-,,iel .0-iteetteeltn

,'teveorreenoleees ie 1 = = I with peentine group enisity) withe an

re,1. tire! .e.ee.-lei t. as n it . -d - b ii ~ elinne this situation is iteanbigu....nly

Q,,- -.,t.. S deeeIerctr-ie, Q nay be, GKS staible, delteittiag n solution 5.2 C IS-unsr able solutsion, with finsise reflection coefficiens

frv .eeee riieenc ighth)og triodes 'if any kind (Thros. 4.3 I. 4.3.2). InFr. re. ... lt0ofa1~~rdi1 -dy..

cli ee'i t 0.11 heleae Iiiallit altriet asp see-, The e'ooplttins come mhencsbel ednd i 36teN~i

eee e-'-. at, en nitebceeetnseeri eh- liewo e-treee, and then ehapter is droled eellti ceeitlii(. ~crfat
lee Ic g,, i te We !1 eo borelccen ea-s Tbe geuieding questions are, what 'a the D ae. + '

1
o = 0le.

f- ~tal oudar vlueprb;.t- 11 aprorite s he KSrelating riglitgoiog atei leftgoieeg -edes at the boveceary oti 'ciiorm time del~n'

We are .rai sly coneerned with two classes of borderline eases. Seeppos that Q in adce Ieee 01': weaed na re o iiect uton of X egl nan .n nij ordin t rseTe.p
(;KS -U~h-, admitliK a ight~oin , C-soltion or eneralied isgeCR5- stable if.3-,nelm onlytaif C

1
'andislynifi1ig:uiseno feesul alloroawithwith( >I1,is

Th- h doe Q bh-cifmbieh ease for any ouch a, a
t
" determine a"f by teleucs of tike forneala

(I) Tie refleetioe ceffenleet Matrix §I1')-e 
5 

(3.6.5) corrseponding to zO' is

toe~u rallies than infinite' 01-i = )lll 'Iilll(5.2.2)

(2) z-0 costains no strictly rightgong mndes? (i.e. Izi m 1e and for each mode On the otheer hand if I'l is singular for sme a = *o with Io. 1, thes (C")')

to 0 eiter -1 <I o C =0?)is aindefieted, sr.d there is a riub that me may have in offeet as infinete reflection

The -oSe eoffninations implied by (1) and (2) do sot mthaaut the range of C.KS cofficient.

stabilities, beet we belien they toace the important masue. Is theis ohapter our Whet happens to (5.2.2) i0 thin cusef Obuictesly, tie equation -o it stands h-e

altis tn esaielise these problems, illustrating these with namerieal xap', meats, in otaniog. Ila--ner as.sene that Di" iend JDlsl ore senoti fanetions .ef - is a point
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set 0 consisting of the itnereetioo of l, > I .!lt . .. 'iglthorhon of 20 and that TTtILE 5.1

Dl'!() is nonsigula in fQ - (zo) The buas of right- and leitgoing solutions aith Ilelleeti t (;KS-ontuble A o
respect to wha' and i

t 
are deitted also depend on *, but let us oune that Label 5'

+
0 = .- fteiction A toole (oI. 03. ZO) Atzrl ', :o)

this dependence is also s.oioth in IQ Cotisider the limiting matrix

a s7 - "-f GigS-stable
A, = lim (Di( 2 )) 'LDla). (5.2.3) a-t+n

.En -n + StVn - - + 0l-liiW 2 21 0 +1

The existence and behavior of Ac wilI depend on, whether Dt{(zo) has singular be- j(c, + u"l - (I, -1.1) x-4 +1
havior that cancel the singularity of D '<(zo) We osoler three pssibilities: 6 +1n - (-1,1,-i) +

s If the product in (5.2,3) blows up an z .zo then the limit does not exist, and

A0 is minsnte.

* If I I, limit eninto. then :n is a te. t..bh s.golaor y, n nd .a is finate. Initial data
Suppose that Ao ests -d iite, and r r It MtNSTiiArtI% I First let is eot,sid,-r stabilit) with respect to the initial

*op tt eta tt n I,,' o,, 
t
t t.t the -ne i,- u apiy to talitlI;ty with respect to forcing

k frotrgel.4tl ,lot " . tIe ,rc I .t,'w' a iti,,f ,- ttr tt , to in es tennion of the computation

f,' -22 i1, 1,.-r, --. Ihe 1.1 o ,f t, = ,t th 5 ta, b.n applied

that is, if I' looh " 0 with a' 0 3, tir .' nto x teor a *'-t, that ,: k r, -, t ', al h - I 1U0 Tn, a ta trlihntoo is the Gaussan

a' = Aoo
' 

Then A io ar (with riseot to it rstoLie riligotng nuotio-)

- " [1t 0 < I/h .2)
If or opoeiialm the dinrissio, st, our pr,-,i 

t
i with tot leftg'g ad ine I t 0, (.5

rightgoing solution lot co, wit h o 1, then 5 2 ) benoe- t. 1t, ,., 'q.'-O t' tl., llgittig -a -:dierreptdii;g t, the unstable

- _d
t
lrl) tC,.:), 1.52r g tt ..ti "i. a 0 0 t ft ,,ioIT,$unlmto= -1 Ifor 6. Icrt pa.r

di f',, , ,, 0 ,.s I ho. i , , a t f 0 ,nd the r ult t t= 5.

ahers'o :oh letter d 'ottes o stalar 3 2 der i man) rr tton -tfi- nt , - I' .e -0, .4, I'ig 51 showe a grenat growth
o thin it Q is ;KS.ustblo if and ob, d'r(z 0 ) - 0 for sorne c with r. tollhti,,l ot lii[,,, It Ohi)..,- th:o in )nstil -I io ate ; ...t,-o ,ii illst- Ilt

o! > I The ;iroiting reflection norllicient oill b infinite, finite, or zero dip-'fing let, lr , jogt th, 1:lx 1able ' - , n-) gr.th

ons whether d' has a t 'o at z = z of order lower than, Nual to, or higher than ;,W-1)

thut old a Obseenatino 5.1. stbe -aphtfirattan "ttut data necY., 'jt f
Th ,',tion we wish to ask is soming Q is (KS-unstahle, how is its unstable an tsmft-t ,flttn coe.itt present.

bebhi.r. if any, lecte,, by witother A is infinite , or tern I' ,tsoir, ,e, t-.oghi nihriioaet alg,,fr t t.t.. un I 0 lW-rent tiolel

Let u, u, he to,-, letl by LF with X = I for j _ I. It turns out that by letting inu) foil to cog, as th t t ri-fittd. Is.' ili n I ' i ott,, this
Q rstt of various boundary fortitul;is for re.'t together with this scheme, we can Th esooth iotil point ought to ptt, gt: t'er,,oa h t: d= I ''I,o; tot ,!stead,

o-,r a rl rot t if degri -s of stalihty. Cotisider the four posiiblities in, ',,6 listed

t T.,dit , il l i e these e tllt's o -niore thlenifteottee of reflection

liti t 'It. t , ,l:'t loioorof .5 I r....i it i.e ,,h rrt S It
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'et r i t r-t ii IJ,1
a _ . fO-- t--.------ ire ball In it r ,,< , i mp~ br~ld ners. dlo ,>h ilrl .',

t
a = i~:l. = I3lited

Iaic ". 1 ut r *t. , rI -li I for to l .ir t. r l.. dait t in li 5 i irtually

iti vga unihatli Iron the r, ult for the llS-ntabl" eas( o. and it eertaiily appears

6 f/ 
i  

________;"\ tht -unt'rgitii tak in place Vie propose

Ob.lanmion 5.2. .oseonnrigence in a problem d'i n by smooth iitiual

ata ocears only if a nonzero reflectioron coeffcient t present.

l)EMO.StAItION 5.2. One may aonder whether the same observations remain

valid ir a more roiplicated initial data distribtion is cvridered. I[ Fig. 5.2, Demo.

5 is repeaced with unifortil, distributed random initial data,

6j ' 
=

1 /h (52. 6)
rindot .1.1 rs= 0,1

= 0 £ = .s = 0 t =7.5 The plots shoa that he CK5- unstablc pranlil , and 7 r, virt-l! inldistinonish-t h = I

tis = . ' ~=-0 able fromt the (ikt-otable probler v. Btut in the inlini reflection coefficient ease

t the copif~talion in eotpletelyunstahle, Tins nupports Oieriaor 5.1. This

enpernent doer not shed an) further light on Oservation 5.2.

Bo.ndary dat.a

FIG 5 1. Models , , with Gausian initial data (5.2.5). )EMIONSTIRATION 5.3: Now let us look at unstable tehasior at h respect to

boandary data. In Fig. 5., Figs. 5.1 arid 5.2 art dupliated with the new initial data

I I distribution 8 4 8

a w ~ ~ ~ s -osaa..~ro ~ 5&ovAeh~5JVt = S i ' no 4. v! = 8 (5.2.7)

which is the samne as in Demo. 4.1 up to a scale factor. This amounts to an initial

a .input of more or less random energy at the boundary. Fig. 53 shows that no C
B~~~~~ ~~ " t;;t" 

-  
iicreas'es, spontaneous rightgoing wavex arc generated inl all three cases 9, 71

. 
T]heir

Ir amplitudes differ, but qualitatively All are the sasre (except r course for the difference

in a betwren 3-', and 6). They are all qualitarively different from the OKS-stahle

problem t. where the initial data has apparestly caused a rightgoing puise of finite

' rr tlrtion. A table of jivjo An a function oft confirms that a linear growth in energy

I t I is taking place ii problens 11 , hut thlrein tin growth rr problem a We ecnelude:

A ~ ~ ~ Xt~saa...aa...Observation 5.3. A GK-ntbedifference mode esajal

{respect to boandary data regardless of -hethehr the reflection ocffioeiat

t e0 t .5 t 05 zero, finite, or Mfinte.
1 I

h "h Ta This observation is in keeping with the fact tlat Thin t 2 1 tiade so mention of

lIt 5.2. Modcl n, , 7j tith random initial data (5.2.6). reflection eoefficients.
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- lr \rirN5Trt.\riN aI A grr. 11i a gail it., a oR In.rr t he t-r s;t,r wit

a ranrrirr , irgal FIg, 54 0i r11 Ili usual -n1. In if plot,, o'e 1 ! otIat now I the

fII I.i It,,,i it rrreo T frrrrrI it 1,orniahrenrvous rarn IrrIaroIrtry dat,

p' =-radom~.1  5.2.8)

AI, before. it is apparent that all thee CKS-u.anh boundary rornoata f-h lead
toerierg raainr ri nt erior, As t inrese , rnrrplitade of the -o nea

the briitrlary) will foilio, a kiind if ranidori walk, achievng amiplitudes, on the order

orfn Ily chnorsri p' ti, ie a reiular wato the riostabme frei.ency 
4

' roold

6 ea river i t~n-, his tonii.i l~r at"c grir b rpanria to t Tire CKS-s Ite prahien

a. an, tie arlier hald. Lirina IT rr iie a hai pd raont walk, with rinifrmipt

i 5 1=0 t=.5 itaarrdil ,rnpl tnirk. tr -,,ua .i..ial triner;.g~nnr~thrho';iaeJ.yrion

-- ~ diety iirto i '!1I 'IL' I,~ r 11 'e *i 17- r1 ri,,1 1r it" ~ir.r to 'aliif eniergy

foremen I , Q \lnrit-.r,1rnrs.mn -p- I,3.
Ftc 5_3 Mondels na.,, '.6 at r'ee 1nir~t initial Iota (5.2.7).

T-o bo,.ndaeie.

Si;'tpr.p . , 0-1i a.. '''at-- a, tn.,eof

0ii,~'. nlinrarrm 1 1;' K~ S.'it.,t, r~~t

Therem, 5.2.1 U.r42! LittQ 5o C-ht'o .a f.hp'aicrn

qqr ~~b1 'eriorri the ba-rda'p at r, I to - . CKSa,:,,r -ndr, the ry

aarird bg -er'cen th, bcr.,mdar at! 0 to ,Ia Tfin Q .o CAl usa1.6e

I= f=. 1=0 . 7;m , - - ,I 11 'Io lt

tc riitt n,$~.t ailiIrI.Ir'ia landr (tr., ta-dl .01 -:p' i i ',' 0 k.~ Ir hn~ t if

b-,~do n lip0,r ai ), o ., t- .dI k-



identical to that of lrin. 5.3. bit carried op to t = 14, which is time enough for 'Case C > 0:" For at a least one t, Inj = I and C, > 0.

many releetions betacitn the boandaries to take place. Each entry shown the 
t

, norm "Case C = 0:" Nat Case C > 0, but for at least one a, lIl = I.

li"!ha at a fixed tire step: "Case In, < I:" Neither of above. i.e. ax.) < I for .11 i.

a 0 it lly definition. each signal tZ'K, in (5.3 1) is rightgoing, but in the cases C = 0 and
t = .154 .154 .154 .154 j( 

< 
1, none of them are strictly rightgoing (§2.31. We wan to insestigate how this

I .150 .107 .170 .513 TABLE 5.2 affects their unstable behavior, if any.

2 .104 .132 .136 .090 As in the last section, we will work with representative examples. Here is a

6 083 .124 135 5.66 X i03 two boundaries contrived but very simple model of type C = 0:

10 .051 .118 .149 1.00 X tO LF h = X = I

Ii 073 130 .174 4.52 X Int:o UI for u, = o, with x = t o

Nt;in the , ation u, u, a s onadild on (0. 11 by 1.F with h = i/50, and the (We continue as in the last secti to label esaiyi with Creek lectern.) It is easy

hitlure e'triinton at a = I was ' = 0 The tatle shows that problem 6 exhibits to verify that (5 .32) aditits the GK. uTtatl. grlt-ed eigensottin (a.z =

e:tt~itrtt.t grtwth. ttit fr prsoblrtse a, j3,t there is no growth at all. Obviously I±i, i '.t for wtch one has C = 0.

,t,, (;Ka.saile prIhtt t, hoa no advantages here over the GKS-unstable problems her an icarnplc of type I1l < I we turn to a t&t-cpatt-e I.ax Wendroff model:

I M, o-.. I" 1 {53a e r ,Wfor ut u, with X = ; =t ' - V
t  

(5.3.3)

Observation 5.4. An unstable generaized nsoluton oas canse

rzporn al t rowth when a second boundary us inroduced only if the as. One readily verifies that this moal aditts the CKS-unstable vignrolution (a,.) =

t.rted reflection -elincerit t e. i-s . t).

By strItghtferward eoputiono of the nr! le have done atny times, one can
Tiir i ariple argunent involving z, o, and A(z) that explains why Observation ore thaI esamoples c aod c hore the feature thtactier right/left reflection coeffcients

5 .4 hotM hitid Fr this et S6.4 and 56.5, where we discuss two-boundary problems are finite. (In fact one gets A0 = - I and A0o = 4. respeetiocly.) This will woke it

in detail ditht.lt to separate the effects of one borderline tircutn arnee fron those of the other.

To get an example with C = 0 but A 0 = o, we intent the following 2 X 2 problem:

5.3 GKSunstabie solutions with no strictly rightgoing eomponent. 7 : L for (O, = 1C i ith X = -"

i~/ O I . 2' (5.3 4)

Suppose that Q, a difference model of an initial boundary value problem, admits r at r t

an eigensolution or geieralised eigensolution (4.2.6) u0 0 =t t v 
t 

=Cc.

Like i, problem aditits a rightgoing solutiot of type C = 0. namely (a.) =

v = Z a, a.0. a. # 0 (5.3.1) (OiJ,.±t ~i €' - (I off But now the reflectiotn vceflciert with sespet to (strictly)

leftgoing energy incident in the v component is infinite. Itt o.p be the a variables
with Irl = 1. (For uiplicity we ignore deretive modes.) The assumption (cl = I fr tie u and v components, respectively. Then (5.2 ) takes the form

rules out Godunov-yabenkii eigensolictions, but the solutions that remain are GKS-

aristalile lip Thn 43.1. They fall it three, otegories, which correspond to positioss: )+ +0/ .O 1 I/ il

( . .id (7) of Table 2.1, respetinefy: 
0  

- , o + I /P \, ),
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and multiplying through by the inver. or the first matrix gives for (5.2.2), alter some

simplifications,

J% _,., , e (5.3.5) _______ _______ _______

For (m, z) (is, ±i"/
3
), the diagonal elements or this matrix are finite, but the upper-

right element is infinite. Therefore we expect leltgoing energy in v with wk = x/6,

hence th = i-.'(sin I/ V) = .- ''), to stimulate a large reoponrse in.

DEMONSTRATION 5.6. As a first test of examples c-v), Figs. 6.5-5.7 repeat the

computations or Demos. 5.2-5.4 (Figs. 5.2-5.4). The three figures show the reoponse

of models e, c, and 17 to the stimuli

Fig. 5.5: random initial data (5.2.6), '1.

Fig. 5.6: random boundary data (5.2.8), t 0 t =.5 1 0 1=.5

Fig 5.7: threc-point initial/boundary data (5.2.7). h

For problem 17, the forcing data are applied to v but not u, and both u and v are

plott ed, with the labels %y and v7.. Since the v component o
r 
this problem is identical FIG 5.6. Models c, j, 17 with random boundary data (5.2.8).

to problem a or the last section, except rot the cocfficient 3/2 in place of 1, the t?,

plot gives a convenict GKS-stable comparison to the others. As before, each plot

shows t and d t5 r h= 1/50 and h= 1/100.

'7.

.. , 1 =0 1 5 t=0 1=5

h= I h= I1=O0 =. t O i . 50 I00
0 h= .5 t=0 1.5 _W0

O h 0 FIG S.7 M oddls .,, tIh thrc. pu: i Ati;l d ta (5.2 7).

F ote 5 l% W . aith random ivital data (5 2.6).
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OswiogmoesObservat io n 5.5. 1, cas t or .2I. aastn no oiaon

The hirst thing t. oltoero in the,, hgrrn in that, in contrast to the situation, with -that 9ot 1teo4111rtS:h

en Ile in Pigs. 5.1 5 1, is catastrophic growth in tahing plane. Far problem-al, qre whu cabt.upst0-rni Dd
with aJ < t.all or the solutions ohoon ore qoite small, as the dinoipatloity wouldiftee.,sh gong-d 0,55 plu,,h),,-aba-- ,Wn,

nmake one enpert. Note that in Figs. S,6 and 5.7, the etixtrihotion at t no .5 for thisfo xnpeinFg55 orcusw hvlngaobt- M nnsity
problem locks eoaetly like the eigennolution (j)I. For problem in, with C no 0 aod ihgn slfo avzeonr3fux(.).adnew ldxpCOb .5t
AD < io. the rondomn initial and boundary data do not seem toae cased instability rhgldtgnig noltqtin hone ths.eeg in( ,adse ol netIb.55t
(eosnipar problm t, in Fig, 5.2 and 5.4), htnt the sitoations with the three-poiot ioitial

data at the boundary isnet so clear. In foet near the hoousdary in Pig. 5.7, the nolation Initial dhata

1-b' aeen.. ornotels thke the '4h wae" with . =o ji that the GM( theory says is The abnenoe of growing modes. even if we enuldl prose it rigornously, would
':rstiohm TI e revuIts fur the so romponst in problem t?, with C no 0 hot AD no Do, not iroploty.tliiy because there soold mIll cost iiia data tr ibttios that

.... tot, Trwhile the rerspnnenr isttuirely stable. whieh is what ose expets from ould grow orbit rari'y truch at otr Itlort 110ti1t1tl) I- q ttgoff Ntevertheleta, we

(3.4, or (. 5). enjecture that pinkbes: nit tn-nt: ble. as defitnedl in q( 2. d-piss hei ng tClSaunstahlr.

Thr niuttmu in eltnrired it we look at t2 noirms as A funetinn of t foe the three- If true, thin eon Itrohohlc be prosed h, at et-g, sinthud argot:., l5(i417j, and
pitprlsrens of Fig. 5.7. Table 5.3 lists (111 for, itfor A no 1/50 and h no 1/00 posnibly also by an oyplieati,,i of ths ldean nr §3.5. In general. one applears to hose

at tnoeer I = ks= 0.2,._ tsoetehing lihe the following:

57 57 i Obs~~~~~~- eratioun 5.6.. In tsar C no 0 or1- <O 51I.tnsabecrheooto

nsnt- -al data peonided that the e Dzeno officient, are ls, e
t = D .135 235 0 .135

.2 .132 .t25 .10-I .077 DF.MoNSTt.STION 5.7 ly eontrwt. a problent with An o s nerd sat he sthle

.4 .t124 .125 .076 .075 Ah with reslnt to initial data. To demonstrate this, Fig, 5.x shows a cnnpatotu.. with

.6 h69t .t25 .008 .075 proiblen: 7 in whieh isitial Iota hone heeo ehosee to stnooeas much rowth as

.6 A17 .125 .003 .074 pnnnihle, as un- done for esannplen i3 in Pig. 5.2. The initial data ore

2.0 .110 .125 .076 .070 TABLE 5.3

no =6 .096 .096 6 .0116 5-point hondrary data u0 0a m,
.2 .062 .066 .654 .054

.4 .063 .086 .066 .054 with Ch no int'( ). Fig. 5.6 shown the rent ting signals u and v at I no 0, .5, 1

.6 A7 ..66 .04roe A no 11100 and h no 11100. It appeors that Slurs,, ue bu~ainsht it is

.6 .077 .69 .056 .057 ai extremnely weak. The initial wane (5.3.0) with h = I1/1200 has etgh~t te so mnany

1.0 .066 .09 .062 .053 grid pointa in the wane packet as (4,1 k) with h no 1/2.10 or (5 25) with h = 1/O0.

yet it generates nothing like tine 284told nmplitnude iterease bhat we -n a, P-ig, 4.2a,h

In no eae In we chsersr any growth in eniergy. (Note how the noumhers confirm that and that in lnrhirg nlf-sealt in fig. 5 1 bloer. lbv ,g-1a that :t gennoraten des

fiue pril: ; t hn sni1 rtac pidly settins looin to the form of n tased eir'nsol otiass.) not radiotecttso trt. .h In. ittIii an 0, hut eti.6 , o'do-dijt'In an it dirl.ot

Th r w uggvt into the interior.
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'I.
Again. a -ae of f: norms ak,s it clear o hat is going or. Tab. 5 1 shows 11s12

1=0
0..i and l lji in thin problem for both vaioc of h and various times.

It

' = 0 0 .177 0 .177
= .5 .2 .165 .150 .207 .143 TABLE 5.4

r"" .4 .198 .060 .301 .059

.6 .185 .060 .293 .059 'bad* initial ennitions

.8 .182 .060 .291 .059
,orsi. 1.0 .184 .060 .2g2 .059

tI For h = I/O, we observe an ampliication )u()l/)jO)/(m0)l of about I, and far I t

1/400 it has increased to more like 2. Evidently the ratio can be made arbitrarily

large by refining the mesh. But it is hardly large as things stand, and confirming

1 1 Obs. 5.5- there are no solutions in evidenne that grow with I. We propose:

100 00 I Observation 5.7. If Q has C = 0 but A = oo, it ts wo.0kl unastable

FIG 5.8. Unstable reflection with C = 0 in model Y?. The initial Lath respecl to inslsal data.

packet is the Oaussian (5.3.6).

Boundary data

Froni Figs. 5.6 and 5.7, we expect tiat ir Q has C = 0 or i < 1, then it will

' - 'A not be dramnatically unstable with respect to bounidary data. In fact, as in Ob. 5.7,

it turns out that there is a weak irinstability. As we round in Obs. 5.3, the presence of

this iiistability does not depend on whether A0 is infinite.

. . ... .__ hi __ _ __- [)tMONSTttATtON 5.9. Fig. 5.9 shows an experiment like those of Figs. 5.6 or 5.8,

except that now the computation is forced by regular boTidory data oseillating at

the GKS-unstable frequency. The boundary condition is

i__ _ = (hoirog. be.) - I- co. arb (5.3.7)

with Ik = x/6, 0, and /6 for , , rd. rwid 7 itip'i ly; ,d the sigwre sHOWS h =

1/.0 a-d h = 1/100, Th resLto l mus i Ui. 0111s of ig 57. hir stronger. Some

- ______________ ________ _ _instability is dcfriitrly in eidl,- fer all thee, tpr-blemns (ri e the sm all ani llt1 of

thi r,, irg term ini (5 3 7)), and it gris strlmni r .s 0i is firimd nr s t incre.oes with
0 I 1 .5 9 0 1 the b,,iidr) ur.tion tefi i. ', "l':lleii in this ,? .a r.-1n tm I"norm.,

50 180 oli I. In, ti, e isa piril l finnr k g rl i. h n-s n" m nOn s .ith Limnse

Ft(: 5 9 Models , r. I sith periodic boundarI  Iata (5.3.7). mum Ii .,' the l,-1 ofn Ih - i,,rr g ii ,i 3 71 in niCs ;,lnrC..s. ln n /10.
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t 0 0 0 0 0 a t t. 1ott-.ts t..tt.,;,-s tt ts . ght hs I.. a,!. 0 t. ,ril biati I
.2 .039 .112 .019 023a d

.4 .059 .220 .037 .031 (A = 
5
no =O, se - t u4 9 - i.

49
.6 .092 .327 .054 .039

.8 .102 .435 .059 .044 r.h ;rot,s.rtt'i flit rntr.plh 0., of tie :tu fr.ja ia n'ded to tirsaiure .
1.0 .122 .543 .076 .049 TlMA, 5.5 ,q~tt trio v en and I :,I he rghlht ioirlrit The reAll.s are swnmrd its

Table 5.6
t = 0 0 0 0 0 'bad" boundary data

.2 .042 .156 .026 .022 17. rt
5

.4 .073 .309 .042 .032

.6 .107 .462 .064 .030 t . 0 143 0 153 5.1

.8 .124 .615 .078 .044 (h = -1 100 022 037 10.2 3 12 Tll.y: S s

1.0 .116 .769 .087 050 200 021 037 2 II s t ) 30o 5 I li 
3  

twj l ,,,e,1artea

:t0 1021 0A37 '1 1 • 10 7 4 , 106

N-even heless. to achieve this a..otint of gro-th we had to stirtluate just the right tOO 01, 037 1 A5 i5'' 6 :is io

rrtlar', and if we had done the name or the Atrietly right.irin poblien of the
Ks.I, titt. K gh~ it titri - tol ro rutht:t :ti.,-fer* Pt ttrn ,lel'Itltere >i.. '11,t tential

last settion. the reosll
, 
would have Isel muieh more dramtic. We conclude:

mitt-tnI 1.h a-it- ' tt, . <lhii .2 not,.>!, liege. vePs of lit the
Obseevltiorn 5.0. A4 model wttO (' fl0 oe j

i  
I is u, eobly unoitoble aiit] :h,1 ~lThi,, .l:'a aret n h--igl sti., At modlitCs . 4 <el 5.10

repect fs boundary dat regardles, of whether the reJleetion eoefieieni ii

Izro, finite, or ir-finite.

-'t pitr the impressive 2 nori, it is obvious (and expected) that nothing happens in 5.4 The tranparent iiefaee aoaly: ia low.oitow theorems

ean -except at the boanday: The "ta. r,- tt metrt:.e annoialy' is kas snlde titat in addition to bing

Otisee ation 5.0. Is a problem of lpe K[ < I, any unrs tab le o l u. ra hthrt.trh tline. .t .. arn thsit - - ,lil, . tit e, I t t.I, h(; S nistal4 hat at the some

eofind to the r eaion near the boundary. I f t' i& , ) .r ii,,, 1 5,-, -11, 1 1 1- of E-,ph, 3.4 (S3.2),

ia ih a griI lath I = h f.r C < 0 is -nit.lt, I d a, l Kt".h h = hfor ij > 0.

Two boundarein i 1.0 I i , 6 t rtata ss
1

-l', rre, h Isi, If , -r i.. ihet all three itr rfsee

(ibrervation 5.9 suggst, that in a twohoandory probei s onsidered in fr. ,-tht t ft. t32 at.,) stah-, ',, ,t f,,r -e reit s i ..i.f i.rl i the

to, last section. the r r o aatable basiiary or type t<l < I prbably will 'at in ,t inrirn n- g ta, g- i !li.t ri-a. i,-ttl,r titrgttirrztse

'iot sti e sporenti. tr0 att. rt- I I.,, in true, to s r . ,, Ls ofr i ll sami h . ot ... h .. I I. It , ;,i C. r- fi..01 .1 ,'
W, ha e the ro wing - i ip t or ob.. 5 4:.. , .sit Iht , Il" forttua ,it j - 0. ,rta ,.i it i, It -0, iT. a plhrlisslsit A l llO t.t

Oubeentian 5.10. An ustnable bounry f tr cause eponeni growth I. Sitter lb 9 late ht -t.Sl,ht'. , -ra1st :t at ht '.- l , O, r .l-, s, tois

in a twoe-boundary model sflit is of type C = 0, bat not if id u of typc
< tI ;L, ! ;t , i--t ,, th tt ' t ( K a tboliT ] , s i, -i lK t atil t ty

i.:MOtNSTRtATION 5.9. To illtsintrate Obr 5.10 experimenlally, we ran problens It is 1ii s ia) ., t.) rsts>1,tsrs h
! 

ttt, -- p: ttod-. :, tii..si ssr tirtg to

139 ItO
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It'- i;K: Sd, fin ThI' It K' .,1stalte oi trot. hat It atits it a gritraited All together, itri clear that Gi (;K osoissrnun of '.Ih; is rat,-r tIsli.t],g

1111.1.,* I'll. Z -- I , = o on toth t s of the interfaec Fly Fi I to for th t transparcitit itcrf-:ee preiler,. and ,hat thl is ate to tbe for tat the

). I It, ate I, 1;r1p lority t = 0, ustd th.i i p flat if a wate paeket of (KS theory in orettet toward, boundaries while the trastpar t interrace problein

*hit i s hI.I 'to'd , r tidII I roittdrt = 0. it will res ii T ITrotitn telp fixed tlere Is concerto initial dt I t I atura to - posT that t1,e a e ,ithr mo els o f initial

! ai'< alue o ar, at observed iti §4., that because of the boundary integral in boundary value probietis for hirhn the (KS result It also nro;oalrl. hot where

lh', it [ fn 1r (;K S -ability, such stationary behavior constitutes CKS ins ability. the true state of affairs woul not be so obvious.

In terms of Tti',,. 1,3.1 , th, instability results from the faet that tbe wave with

" 1. thb defiritiri Ith rightroitn and leftgriir~g (psitiIn in Table 2.1), and

th,<, a tibi<f .t a iroirgh, fir,; > 0 aorI leltgroing for,; < 0. Or in termn of
A "strict transparent interface annmal"

Ti'ic :,; t0- jst.,t!t, is Ir , th ret that for K, = x, ±= , the denominators
The idestieall.t 7eso rel, c -- foolioiet run'ton i, tis essential rro for the,,i !i,, , , ' i,, IT-?£ f, l , ti(,,,, (3 '. 20). (3,2 21), (3,2,27) vonish.

stability or the itt e aotoiat. i It, fort the (KS ,ristable
Wi. h. tu' shows~

geticratired eigooli)hJtio iniitd ihu ( os 0. T, see this eIIrIiier now the sane
Obnervatitn 5.11. (K', rsst'ab:ity does cot inpl ti nstabzsfi/.4 I "etop as Tieforr, but with IT' rjplaed hI i~ 2, the ,ya sig moel or no = u.

Is, ;n"to. , '. I t i o o-Wi t. ate the .r iic t ai a thIrirem , i as are ' 2. App A; V' . t. I
l ,  

Ire are to ,'istii t wars wIh . = I .... stritly
I ,,tre g w.ith C = . Ain,d ,' - strict.c ftigo g wrth C -1 The h.,.iroson

plot of App. A :,;rrs tis char As, a re lt, I , ' s t adii wiLtisrr if thr e ii
Theorem 5.1.1 [et I be ash 6 olar or n -toe difference nodrl applied for illustrated it, Fig. ! l0. WI i ire 1strict-a outgoing fro Iti sids or a trart.parnt

Z thia rd-rtosa b state sort ton C':' rrth 1-' = 1,; = I and f(st. o) = 0. interfec,

let ,, thought of a.s an rnterar point ef tf and the GKS thory applied by

fo:itisq" the nodel at thrs point (3 i Th e thr -Ift .r GKS unstabl. C= - C

('roof R;S
4

irisr.rh!rr, o,, friirii . i.h, 1.31. sine ..... eon he thbght or I I 5

a,~~~~~~t it, d.10nigo 0.O

.. ,tIll art ljoirg IT - she -Io'It* a b-e
ft t ri ,r it. K, 'tros1 , lottrr ,0ril ho ' tr-rrite'

ai.. icIriroI., rhr- it gri. a ,'iir Isd t tITT sr|l, oft Secirorttb

if, . I,, , ,' .b'c p ,l l r . . :,,I t r ,,I ' ,;- t rue. u nit it hder, ot: k i u r it. f i L,'u t i (;KS . -tre

air . ui sutys -tuot I. arno t it . ' :ui't s . the h

rql~~r 1:,l ( ,'1< e l l .t h l e 1 ,' s lu O t 0 h ) 1 ,I' r-- 1-, be" , ' ,' t d 1 j! IrI J , ,-,I- ! r'rl i th tl ti fl ' Ih; l - jT ",' ,, t I' ll 2 3 ' l 1," p t it"

r~~~~rp :4 ().ht"tt, 0~ (,o III ¢ ltI( ] r-1 I~t 'I,,+, !L1r: rt rla' ..+~ .' r' +a i~ T h lh: h iskm P.- : 1 " z I ,o ~ t 'r y C S 'r t oe

I'" ') , , ',r-,, t .i. , . ut aItai c a rt'.p ',, I t tort I I i ia o ris f . .Iif ~ i h i i .i i, T i r t n I

: ~ ~ ~ ~ ~ ~ w -
'

[ .,1 h. ,,,,n ta*frti I, T { :(, t a imal or 4) it 
r  

*I t "."1'1 .f , ,, i 11" . .....t * I, Ii *rl~~ ta

r. ;*, ~ ~ 1 a IT ri p-r , r¢ l -;,, + -1+ - , *t~ ] ITt ~ t I I, t i I  
11a1:10 ITr ,.,:, ,r,,r .. rJ, ,. , !p , C w , I r,:1,J r:,- , , 1. r .r t at

.... . . .l T - 1 !

I 'I



tier e 1ryl'ilt lr;,l, ,. ir- o&I Tire rtatiatd wnto show thin, in T'i'how thin, imagine, a pill iwitt ,,-rli r;,!- .i.itw tP t,ldl.

with tie ,i uation for t,, = I, a-mil he, t,- prov thrat IrI satisfies a hond ., andl u,. Let r- and , or, oi t re I~.pr - - 1 i, c' =

iva r, rro aies aod thiri firni-otrer diiifereneene. But irn the prest content, so that data in tiren roitorerit In at , ni-ri Fiireieer t-trsilu trt at

-,eic tn iibdity to pratie as a ronnqienee of tlie identiewily teen reflection the haani~dary Let U~ ,Ohey rirly 1 i
1 

irrirt wire , I.e.b, i at dsta at yr'
1

ene

Iiir.t That is. the IF
2 

niod(el possesses anrtahle resonant modes, hout they are generate a rightwardilu ioof enrgi rieo rrrb ite-, -tern easoirt i.e f2 stable.

i,t ,ig iuiid treetid by initial dota, hot its restriction to v is.

The diffieatty again h-ahrd wit &, - nh rrturare The, ,rillo u-.r...tll. idea eed

. . .an haning control af tire oritretea oI in along11- the li odory , since tfhat is whore

tire itn- anti ootiiow satililet at ,.iii,d T'he tA -allt defiri-tion is strong

erl-. i thgh.- hit trn I., gri th-4' r'r i-iter,-*r the , n-dire nega it inolanie while

we 1 wlow 'h-n thrat tho GKS-instability of the transparent interface ie. II friitin-'r. ntj -stahilt) -n .In, I hin werlptilt I-. b, a point ,, flast of the

-(l rthe iate C--0 Iis , rateniplelely irrelevant in quesion., of stahility (AK1 s 1irit Ii iiio'limo re, r " it, 1 rr rae 1 r1t" e proWc ri..; t,,e sot

rual dlata. 'Pht following it a paraphrane of an inflna.otlaw" a.i -i.rhn i n.,it u rorr, -r-. o- an' ii. h-i 5 think that r11ta uttlo-

11 iillr r t he io'hrg a,, Ir' .,rno; o details see Thtn. 2.1 if [C.0811. lirtr' i'" ;- h I1lt N- ii il IL i'' li I Id Ji IP 1W.,i'Jr'-1r 1 .hioi.

lir tl,,' ar, ' ''wAtlow" variables, we noan -. ariatlene orresponding to eorrrpooentw It in out! .iuirrrg '-ithl.iti[,,)t ir e -r enrqe Ah CIi 0 rrralt op-

'I 1vi ilenero e~f- tiaautis uath rharteristieii pointingt irto or -it of the 1-dninal ni .- ,, f"r ., 'og- i. -l' it -ar, 1rri ai[ err' lat an

Ii ath tir ~adory, resp-itineiy ort to tghtgning or ieftgninig ode admitted nIbA eo ;t i o ''r aau-,g largi - ati. ,i hue 1_ r' -r, Ainan k-ftr ind

rite llee senindel. Thin tu- i01 c reor in stsndod.. "- greet i ', 1'roi~i lr- it. a .I hr u-italc rilo r-riwth t-ril oottfiw

Therons 5.4.2 /et.Let Q be a dtogosa.lioohie Cauchy stable diffenc .. ni p.... t it - isnohi that a, -ir7 - ,til .g -ig1a1 i'rull geoc-tla tingle

-- rdel ctisifent uith a u-oil posed hyperbolic initial boutndary volor problem Asose ,c1t- lrirm;-t-E erg

that ot the botundary the inflow earnbles, ., ore g.ne .s fusnetion, of the outflows-

ta-tls, e, Then hQ wo GKS-stable foand only tf uamrestriction to !h- euulfleri' nariables . .vnuy n ivui
is GKS-*table. SSotiayad icsin

Sketch of proof. if the rentriebian of 0 to I in GCKS- stahie, then hy the defisition For- t' ('art in Iitiiet.aiiriirii it . eto 1 erea t- n -W ur0i'ilicha-

itI.KS-stahility it 3,i), the t-ittegral of v at the honodor c = 0conhe iittinitedl. noris if itrsrit atiplihriui Fai-,t-, 'toi 1,i- gn Iia- uii t> i *l'f-4tin

P.e h6-ndtr taii c just the, boantlay data for it sir it follows that o can he a rt-letio f... It, ifitn ii 'i. ....... 1,cii utni' tr o '2 2) If the 'eTc renits are

-tI itated to.. Iallrno,s tv ary wi , f . or k. ie I- !Li-, it'- il067, Nhen ,oat iso-

rI-It-t d, rr-,j, erts'n ll,a.,-ii( - ii. 'ii'' ~ f -olp

Ohseenationi 5.12. An inflow- outflow' theorem libe Thin. 5.4.2 ceas; dntl olatrni i q--ltii 'It his 1 2 1,1 2 31 1)l.Ai-rga

Ic hold 4f '2KB itoble" Is replaced by 1, stable * ji-.rirta-n theiiiti r. l - - a- w 1,A . ii' ..... lot, h,[ n -1

-h '-11 '--4, t'.--'.'r-ii'-, 'Si

I ....... - t0 lit '



invisible Nor ran one aoue hat these arion rnechanisms will not interact to definition is also close to extreme it its conservativenes: i a problem is OSK-stable,

produce rurther complications. it is almost certnly stable in practice, wherea we have seen in this chapter that the

rhe variety or stability questions that one may wish to answer is equally compli, converse does not hold. However, in coe respects the GKS definition is not m strict.

cated One may be concerned with a difference model driven by initial data, forcing Its generous alowane ror exponentially growing solutions leads to problems related

data. or boundary data, or some combination of these, and one may or may not he to *P-stability* that we will discuss in 16.4; and its failure to give estimates at fixed

willing to assume that they have some degree or smoothness. One may be interested time steps rather than integrated over all t makes its application to adaptive mesh

o t2 or in maximum errors, at fixed time steps or averaged over time, in the field only refinement problems difficult (Joseph Oliger, private communication).

,,r at the boundary also. One may want a guarantee that stability will be preserved The CKS theory is focused on boundaries, The stability definition (4.3.1) requires

when a second boundary is introduced, or when one outflow model is used to drive that the solution along the boundary satisfy an estimate in term of the daa along

a distinct inflow model, or when undifferentiated terms or other perturhations are the boundary, and the proof of the GKS theorem (which we have not discussed) gives

added And or course, technical limitations inevitably lead to the consideration of evidence of this bis: it proceeds by reducing the difterence model to a rier rence

rirther stability definitions that would never come up naturally, as one tries to find relation in J, with the bondary conditions for initial data, and the forcing data F

a workable compromise between what can bc proved and what can be used. are introduced only as an inhomogencous term in this recurrence relation. In fact,

In summary, the first point that we wish to emphu ae is this, the result labeled 'main theorem* in the GKS paper is not oue Thin. 4.3.1. but an

rstblty foe dsff..sc. model. as caused by iretifble phycal enchas- assertion that GKS-stability is equivalent to a boundary estimate (Thm. 5.1 otiCu72.

Initial data do not figure naturally in the theory at all, and must be introduced by
u rtnd, o.fly iGnabsl resde a rsog..,eprofagtese sha smle

ts way of the forting runction F at the cost of a factor of h (Thin. 3.1 of (0.72), or
. t rvecnses.abirelevant to different stabilit h question. No assqle by way of the boundary'dats p at the cost of a smoothness restriction (Thin. 2.1
IDent ... / m rts, are relevnt o iffeen t s y ........ ion s Ntorile - or IGgl)). Ideally, an analogous theory would be available that was o rundaentolly
deinion fi siit , or den n ooriented towards initial conditions instead, but although Oser's results of lOs69bScount /ot .11 p...d~i

are of this type, they do not have full generality.

We have reached many more specific conclusions about what physics normally Our summary assessment of the CKS theory is this:

causes what kinds of instability. The most important ones can be summarized as There is probably no better all.purpose stability criterion than tlit GS

follows: determinant condition. Haniner, the theoey support of this cosdin,

rnstabty vlth respect to initial data is usually asociated with the isa- in particular the OKS stability definition, are elafively untsatsfactory, Gmd

fence of infinite reflection coefficient. (Obs. 5.1,5 2,5 6,5.7). Instablstt folly justify the determinant condition only with respect to the proilem

auth respect to boundary dates tisuuall associated auth the exsstence of uf eatimating boundary naiues in terms of houndary data. For addita-al

spontaneous strictly r2FhipoinP Glutonu (01.. S.5,5 8,5.9) Instability insight cn particular problems, it s worth checking Aheter any GCAS-

with respect to the introduction of a second boundary u assoctated wnth unstable solution has nfinite reflection coffeent and strictly rtghtpmt

infinite reflection ,oeffitents innoting wvat, se modes (0b.. 5 4, 5 10/. modes.

The CKS theory represent. an extreme point in several respecto. For one thing, it

goes rar in the direction or emphasizing mathematical unity at the expense of natural-

nein, combining all stability issues into a single remarkably complicated definition,

about which a remarkably simple theorem eon be proved. Second, the GKS stability
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sorrty ber us I d e abut tIre Tiio 1,. i. , ,..rr iT -ei ''. genT' th. to

0i1,01761. it is , tndrI" rirrss -- f; i hi i ntts-b ,, -To ca it g iI fined

fo.r.....ia' rrjararer hr in fai,t at. teli-e rhio aip-in I. noy he, or ol The,

might als occ, i modieling ai, .w.ptic nierl s-finreni- emse where there can
he no guarantee that one inlerface herwsn rus....hes will rem a Fired distasece from

6. STAIILITY FOE MODELS WITH SEVERAL BOUNDARIES OR the nest as h is dcreaed.

INTERFACES For these mjulti-interface prorhlemrs Of serlI Aj tryr," . o thierem as simple

or Thur. 5.2.1 hrrlds. and we will dentosstrrrl tlbis is §62 lioceen, §6 41 and §6 5

will show shut stahility results ran mintrre e Itained h) Lrifrlsntn haued a

6.1 ntrducionreflection coeftrieo-ta.

Inr If oal rhopree we consirder difference orodel containing two or more hound-

or rterfac's Tli estion wO hen is oa-h a r-Iril stable' In roost oases she 6.2 One interfae: ,es-Its Of Cient and Tiadrnor

1In>1 i-rr Kill-" a pr-edire fir ans~wering; thisr1 ,iesrr, hut the algera-involvedl

.1 oten -eyerrflTac rod in adili Iran regreltall pr~firhl-rspeoifie To avoind lmTI N FtI PACEtltrxhm. tXT<.lc a scalar fill iresee tTT-i Q eoo ing of one

If-T trTfif ies, it is nat real to Io for r ...T I euts that decpend only on the fiemttl.i Q ,pplkird fur - as K- K ),, oop fil ill . srTT fi'TnI Q, ,pplied fr

isle i~es if each interface independently. (Inc :.is. what t roperties of as inter- Ia K <as This 5s arT T~t'~cOf the Aoti t change" I 1 ceo dere-l is §3Q

e ,- eon gusarantee that models containing several such irrores will he stahle, or rnrIy eentcarfsco Kuur foiafs T Tit, TIre sir fae otay heaouercl

q-aTe'ine trirS rf~iiiT, h ylidioutoisf As....ttie Ifiat Q .tTI t.eaeh satisfy A.n 3 1,

Thic nirrplst prohlem of shin hind is that of mtodeling a hyperholic system or so that Q- has rtetiil porarirer I r slid irlrnessel tI> - leftgrirg and t-

irfiatiriOs ori 0 strip. say 0 S z < I, with no mci- eal conditions peeso~rid on each eightgoirrg eh
1

ritimnr for all a a ith ii , > 1, -A~lrirley for Q). t W- have disc rue the

Iii dary Foe this she CGll theory gines what appears to he the ideal result, which stahilit) of mih peohicorsin 53 §5. Ir, lin 4 :1 1 o- s- that Q in (1- untahfe if

wei tuoted as Thin. 5.2.1I fur CES-statrility of thre strip mrodel. 01 5-stahility of each an~d rr r
1 

if it orli to i son teals) -state urilrt rot that1 isrgro fromsi hoth rIdes or

l-orrdary indiniduailly is sufficient In fant. Thin 5 21 is not qartc ideal. The dilficalty thn itirfoc, as oi;gertcd he Fig 6 1:

is that foe Suxed h and k. a GKS-stahle dillererice miodel often eaihita enposential

growth for a prohlem whose solution doe sot grow, and the rate of growth seed not

ileereasse as h and hoarn seduced unless the model is totally dissipotise. Ws, will look at -If1( 6

this prohleme fn §64, Still. for most parposes Thin. 5.2.1 is good eourgh for realistic

strip prohlems..

"e will he oiainly interested in a differentcluos of differene models, those inLofatr in thIe higire refiti.oitt t srri -hi ereflii in .""li

asi fIII the intcru are, ns separated hy a fixvd distooce Axr is r as hk - 0. hut if rr uni lvs tiitr r) I- 1;,If. 2 I sIf t-if, Sef 15, i a i tfr right! To irite

hy a fined nuors of mesh intervals 1j. (Of course in reality, every comutation is iiit.oe nmust oft- tht 11', hr, 1 f i-0 I p- ii t[ ~ .'r,if cnt,,t -ree

dine it, a torite tmenh. or thir 'listisetir is sonictiste delitatel Such psohbIes co. .me %11%s. i 't ir mI Itir Potnt I m err rN -he o orrlr u

rif- he sieri' firi rlce has on irititIli i-nidey voir p'v.fd- ertretdel that inolne i. .rt a t .firi.r i'- r .. . . .r'ito< :Jf -nr

i-aor,-veeitoct he iriras fceislas is adlitinr to the nTeireor formrula, as osildlr,~ 2 -'<uhS~I..rT . , ,' -t 5 i moso
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A hoxed bo odr muclca Qa I0 aso satiying Asa. .31, which to be applicable mill Theorem 6.2.1.' Consier the ostcef.ac problmn described in the first paragraph

have to he on-sided in the sens of having t- = 0. Boundary conditions of this abov- Let Q_ and Q0. be cossetwith Tes = o-.ro and u,~ = a. s, rrspectsvely,

hint. comnely identical at all points 0. jo - t .are called tr-wIaney boundary with 0.0, > 0. If at least one of them sz r-opatsve and at least one ia t-doeaspatsse,

condition. by Goldberg and Tadrnor Go78,Go8t]. Now foe OKS-otobility, oince Q_ then Q is GKS-stobte.

applies ottly at a hoxed net Or pointn. i t is necessary and sufficient that Q admoit no Thevor-em 6.2.2.' Consider the initiat baondaey colas problem described sn the

steady state solutions that for j >in consist or righigolog mod"a. That in, me can second paragraph above. Let Q0. be consistent with so, = a.., fa- a > 0. fat loeat one

drop the requiretment that the solation on thy left is lettgoing. Itowee, since t- = 0, of Q_ and Q0, is o-dissptmve and at trait one t- tdissipative, then Q so GKS-stabtr.

Q0 adits no rightgocung solutions anyway, so the change is vauous. Therefore aa Proofs. Consider frst the caset = r- = t, which covers initerlaces bstmeea

herore, Q is GKS--i.ce if andI Only it it admit. ome steady sate oolatiaon that is typical thre-paint foemalas. Gieno z aitb a 2! 1t, loin and x. denote the saues

oatgoing on both sides of;I = jo, Aa in Fig. 6.1. fr the aniqar leftgoing and eightgoiog modes admitted by Q_. and 40,, respectivrly.

For prohletns or both or these hinds one main general reeoult appears in the The abrapt-ohange interface imp-se the condition

literatare. roughly, total dssspartislitc ensures stability. The original thoorem in this

dlireetion is dur to M Cirnt: n PE,.(6t

Thearn JC:7/* Consider the snterface problem Of the first paragraph aove. for a sieady-state solution; call thin naunber n- Now -since the sigoals ore Outgoing

Let both Q0. asd Q0 be explicst, twoo-levet faormulas consistent oath the Equoatien Us =from the interface, we tnant h~ave 1-1 I :! IK,. hence o]J = 1. and the non

as, If 40 and Q0 are dissipalsse (i e z dssipative), Q is CKS-stabte. I Neuann condition foe 40, then imiplies 1:1 = I also (Thin. 2.2.1), Since one scheme

A rinilor resalt fi t hiridocy rather than iiiterface problems mas deemved a rew in c-lisniyati ye these cquii~tie, itnly n = I Since otne soene is t-diaaiyatine, this

cas ater. perhaps inileptitdrnty, by Tadmor and Gatdhrrg TaP,Go7S,GA1t). We implies farther a = I. Nca by th ecoonsisteney aasaeitioo, the only signal mith

en preus% their results IT' oar terminology, an particualar replacing their oondlition (3.7) z = , = I is stric tly leligaing~ on the right of the inteeface in the in~itial booundary

o-ithiTe ie, of t c-dinaticity (§2.2). For a fall statemint see Thins. 3,3 and 3.4 or value yriihlerc. whole in the interface problem, either it is sirietly lettgci og theec aae

C.811a._. > 01, or .. is strIctly eightiiing bat no is the nolationaon the left or the

interrace (ease, a.. a, -,0) Icn acy cane tihere can he no instahle notation of the bind

Theorem !/Ccti Consider the initial bosondary voice problem of the second illunirated in Fig h.t.

paragraph above Let 40, br eonsisint with a, = Oso. for a > 0, and assumne that N ow eos~orre The ti-i rlen 111n It' which Q Arid Q0, haoe arhitrairy stencil

,, satisfies the eon .Vramans condition and a ceeto~n solvability condction (Defn. 3.1 alutrt.,An1.,.I,52ve i-Agnrlitrfc

of Coot II. but drop the osrtrption that it satisfies Ass. 3.1. If Q0 Is I-dissipative o hkrdi h '~ r I....--fn t ie ih11>1 e

and either 40 or 40. is disssspative, then Q is CKS-stobl. I Kn1 n K- e,z ate the, leftgg coine fot Q4, and or,. , vi the nightgOingK

tti,sissly these two clonrems ore relasted, And hy isolatiog the idea of t-disoipat- i fla- for Fi- I- 3 2. M) 4cu-il th~at io tgoieu g iu.t or: is in tig 0 1 exist, if

outs - we coo bring out The eonneetivii acid gecierali se themc both. Int particular, anit ocI) if the couic-io

Cittient's restriction to ton- level foeriulan serves no parpose exeept to ennare that o- VA = 0 (6.2.2)

dinnipatia ity will imply f-disoipanivity (Tbhiv 2.2.3] Simcilarly, Tadtsicrns Assumption lhicas Ai atiaci A , 0, -herel iv the van dem Mod nte cIi , ri anioc 1. - aI farmed

is anos-ym thot it in Q_- rather than Q0. that is t-dinsipatioe. We, propse the Imi o,)U .ail A1 in aecor ofli,- n ie~t Wcli e .- Inec 11, §3,.' that

hcio g eiccalstin In each of these therms, Q_ and Qe etay be explicit or

incpiises, two lea or tncitilenel. ei .i ......sl..~ 1ii Fletc l cs~ca~ f ITi,c~os
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Wi.,!-0, lit iti.'an atsc t..iSr , is til 0i.slsrr it 1-r .t;,,tj% !. t. tun t thd tab!,

ii t r . .in rtr'tr 
0

ti interfae.

7 ,,. 7 1 , , :.-,t -- v .. if aodn-1liftit ha

'T it h:,, - -1 t n tr -t only if ., =it 
6 

for
I n' . ... f'pr-of :,,lo

t
r-, h io tgwith (62.t).

I T T' -i r--pt fr- on qoietn.in the 0<3

:,j ,1, 71, , 13: ith, ans-i tion was rade that the

hi i .i~iti~tte Thki ctroioo 1 here the lengths of the orr--or r, tiyt -orino to h tie acsphtrolrn or verg>

"'r'-r.i.r...n the rit-tmion in which both Q Irser o thi errrciotitg otino.Now cit Sf3 5. -e kr-o thiat tIKintbhfity

I,. rho, tr nargotoin-nto of C rrO} etc ho iots ti ortY lha the mt.nc c-o ci ini- try. rortite,., on hing eke. Is

t iotr. tr Thin. 1.3.1)- 1tire lotl lii r-fli-ction n-tffiolo-1, ;- tiriiro , u ioi t that they host -&,oiila

th rt enpiol -. I Tlnin5:Ott Jitie it i ri thi fi-.. a nt,:d? m, A-et - ,ri tcm-nn

snow~~ ..e.t in fl ini --o~rossttg of Q, ao' w1tttr s-. it ily1 a -rnrfiratjit oiT!t,- trte io-ge o the

11 I < j It ;2 2 ., basestn.t~si ;ntihi i BEoti A'tiri r lriat ildi -iii it .ti i booilit,
i fi rt, cr t 1, t2is thrfoe KS-stable. Qr ipr'~ o~ttrr t' trio ' 1t1irlit noinrtcire serfasn nIf the o1hone

ii, ll, c . t . .te cre .ny.rori0-l1Iry .r frond ric riio grit poisto %j Th : l~ii y hapi.tn that eah

Forpe 6.2. t- Q) ci. alt. ,f ct' . ttO t ei ,ocigf) LoF o tiii itr I, trte' refteotoit d tr td r-ronotted enrgy.

t..1,. .'p .A I fr > r-g t 01- s t si Irnoo.dary foro ta

-trW n~fl(6.2.3t

I T ine tsPF 1, a'es I eoi it is t-ipartln by Thin. 2.2.3 .td - a-= E 5 1 "FtG 6 3

! t1 rfsise.i- Tthnrnfre Q4ii CFS dtahie. (Conifraret

or -d t i it - i in n-ot can .er this at

If lie 1-i, itcro tntcr i. I ttlig :0l 'Ire gcti p- r i, l i'srr , i ttiight of a

a5cig)~ to...ri. ..... l.o~ti iit, r.--. as s-ggrestot in fig Pr 3. ten te, i-tifS'gr.rat in

F.t Twa ruteefaces disorpatrorts in not enugh sh-mt geter; -iitOLri, I--. istirrot ci, t nittr. i-ri t1l ititt ger herefre

tn h, s - e1 t, Ir ti -e pp n: cit.-te, list IiiR-o1 to rnilts .cit l~ -ititte

it...z na i, j-, 7., as ln- iei and ons. ft ds en Eaple 6.3: s- unstable .inobinist4-r of H-lsptine saiit foenala

1'flint :tlf ii 01701 Slow one di i,2't tril ' -Tri ' is dI Iin it.t ,i trot. -W! Ph, , I.n.i...of.t

a r.. Ii :ti r....r r i c 'irtli i I Tti, ts. 1cr tohil ectirro .t~t .r.. ...~ 06' th-r i.r ii t tr .t.r i-d (2, 1~.nc

iinIlwtitirti foe -";liq tn ttir -W. ~',i
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ir, that it admits aa exponentially growing cigensolution or Godunov-Ryahenkii type, This formula implies that Q0 , like Q2, is Cauchy stable and totally dissipaUve, smnce

ic with Jz) > I jzi < I for In) = I except when K2 = a3 s 1, hence a = I. Applying it to the

We start from an intended normal mode and build the difference schemes in such chosen normal mode gives again the growth factor z = 129/128.

wc way as to make it indeed an eigensonltion of Q. We will Lnke MIDDLE FORMULA: LEAP FROG PLUS IMPLICIT DISSIPATION. Q' is defined by

1 129

28' v, = s-' + X(n; - v;) + t(v;+' - 2v,
+

' + v;+')

ard aim for the normal mode shown in Pig. 6.4:

with e > 0 (cf. LFd), which for 1 = j has the characteristic equation

z( - e + I + -(n- I).

FIG 6.4 For iJ = I and a 3d I this becomes

- I I- 8 !

I with M > 1, and as the right hand side is pure imaginary it can equal the eft

QOI Q Q2 hand side only when Iz < I, o the scheme is Cauchy stable and dissipative. (The

possibility z = mii must be disposed of separately.) We are entirely done if a > 0 can

INTERIOR FORtMULA UiWIND IIFFEEItNCI: PitS I)ISSIPATION Q2 is defined by be chosen so that when the characteristic equation is applied to the normal mode of

x nFig. 6.4, the growth will be z 129/128. For this one needs,,,=q+ +(;+ 8 27 (; ,,..' + j;_, y> 2.
I lflI\+,(-5\

With X = j this has the characteristic equation + Of + + \4J

Z = I + -(c - 1) 4 ( -2 + that is,
a - I/a - 1/32 1838

-- =-- .01245117.
38 in 9 5,/4 83205

8 +4 + 4 .'

Emronl in forricl nc stay readily verily that In! = I irnplics z !5 I. with equality According to thesr definitions Q' and Q2 each have one le[tgoing and rightgoing

,ely for n= a = I. This shows that Q2 in Cauchy stable and totally dissipative. The Wode for all a)1 I, while Q0 has threr leftguing odes. All together, therefore, the

lrnmula also confirms that for n = 1. no in the mode we havoe chosen, a = 129/128. proposed notal mode hs te schematic form

L1TMOS r tOIIMULA COMBINATION OF tPsetND DIFFERENCES QO is defined by

' + -QI + rh -) ,t tc 85

With X = this has the characteristic equation

I + (- -)+ 7- t.
128 192 4

367 Wn 14n
1A + -8 + .83 5 39

"  
=5 4= 3=2
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Thii inlirItierit itlb the general form of a GCnS iirabiIit) ill aItIratedl I, Fig lt. tb~trI i iii,iilly war Cl(S-otali e S.Anliponentis griwth do, nt vi.olt

DPEhrNSURTIixiN I. To conertim the above an"'ilpsin, the i.tlQ was appliedl fGS-stahility. pennoled it J.- rot heroin, Iore se1veas the eewh in reired, has it

onI agrill h = I/tOO. A, = 1/800 on !0,21 with imitiail data it fastal for eonriftatiorn in twhich are is iris aiicagri/ul limnit mO t 5

jh Therefore Beam et al. delired

2 Dep0 . Ihe~ilj A difference model in hP-stable if it jo ('KS-stable, and further-

with intlow hoondary ecridition nt= 0. The following umntahle growth was more, for all h > 0 It admil re noigerinolotiors with )zj > I. /,

observed:) aoreigersolatior. m we aar. here ii rigentolotior io the stardard fasetioral anuralytic

t s l110l1o.s Ratio terse of the operator reprsertirs the eotire differene e sherne. iclodiog houndary

r onditins at both rods. This ilehtitior roles oat the tronbesrme exponiential growth.

0 571The t reiihl it that it is rot a stability ileicir of the noial sort, oioce it is cot
I 800 .2010 .348 Tutt. 0GA eioented nith :sayi estimrate lihe (4 .3.ti or (41.3.1)- I lometr thecoroplexity of the

2 1000 8.404 41.8 t/KS tlieire, its general, and of (41.3. 1) in partienla, toggest that it may moroetinmes he

3 2400 4.2,S1 X tO' 500 itefitll in dineii""' proctioal stohil ite criteria mitlioot aiti nf for a complete theory tW

4 3300 2.149 X t0' 500 j-tdi if, bell, (Thin, is what me did in §5 ) Ir rope riineritr on their original nonlioear

The ts,.rapily ap~o~re, he pediced alne(124128)On 54.6,A plt o th id, prohl-s Beams et al. Found that I-taility i is reliable gaide to allse..nm

noipoted listrbhitino also shams exaetly the form of the predieted il oal h-eo h uitfc
The nhnernatior thatG KS-ttahie strip hodelo may lnit enpooer,iiallp growiog

solutioiin-i'rot rem, sod in fart §7 of ('072 in idenoted to this phenonono. F'or a

partii-la example involeing a 3 < 2 csosem, that nortior deriow conrditions in termor
8.4 Two irsteefaers: stability and reflection coeffioiets of Xh I Oiathe orsiher of geid poirms ht-tween the boundaries for there to he no geowiog

The example of the lant sertion showed that whren tw or rinse ('KS-stable sigerinnitis-. The cootribuotion of (B,811 it that it ,pplieo simtilae ileas is, a more

interfaeenitlteraet, tho presnce of refleetion roellirierito greater I laa I io rrmriililas ri-alistic contest, andtin its paticuar it denin I intahility recolto for ao interesting claso

niayecause thr cominiation to he unsotahle. lHere me mill show, oiinerscly, that if the of eodels hasri on A -ttahle forlas.

riodali are mint greater thas I, this implies stahilitey. The probleri) we apply thit idea We mill ira, derine P-ttalility resnilts by mmails sf reflletiar etelrirmits. (teosider

to conict from a paper of Bteamn, Wariniog, and 'ter ilefill, in whiich they motinate the tmonioterlie feomietry shiown in Pi7 6.0. nii whiet o comit dilfi-rshe model

asd defioe the notior of Pastabilty. Ihleamn et al In nor argoe try tirars of reflectioan is applied.

roellirierts.) We will reproilice ond esteod their rmaino resolts.

The hargr,rild to 11edM] is an Frllows. Intsidyirg ree..r Saili feow prohlemoI

rotrieriroly or an irternal j0t ], Brairi et al. applied tioie-drpeiili-s ioite-dilfe-rre ... . x x x X x x x FIG 0.0

rniodleltefr the purpose of rleterniiiig steady-stato solutieois, i.e. t . as. Sisee they

hail r, latinely little is teresm ir imioieliog the transent behavio r acciirately, it wits0

rotliral to rssder largr time steps. fierce large miesh ratios X, andi ever to ennsidee

the bhirrt X - nw. henI they lid this, they behest thiot insrorre, its large vtsolc .\ iri I.3 I ohI .1 1. ..... enit , a it erJ .r~ieeet

or X tel to rII, that aileritted estIli otially gruwnt rg solurtions. -erthouighr r ;eA ioi dh(i.lu t.iu Ii it. - 2 .1. Q,,: or .lir thiat Q, in, three-
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point oalar formula asyinpig Ass. 3.1 with 1 1 . (The ideals to follow ran to make simpler inferences if ithe reflection coefficients arc -11i behaved. Her. ithe

all br extended to moe e omplicated differece models, including systeres as well as moass natural such result:

scalars.) Foe 0 aed j 2! J, two tidditinal Cauchy stable frmlas Q-and Q+ Theoremn 6.4.1. Let the twre-srterfotce model Q he defined "a ove. If(A.( !5 1
are applied. Though the figrc illusteates the pore onterface ctane -ci < Iy < as, we and 1As) ! I foe 1 o i us.A ?o 1 , then 0 amits . erieesmadoiects usd c. > 1.
will peemit one oe both intoeraces to degeocrate to boundaries, s in §6.2- is which If em addition JAI < I is, IAol < I or bath foe each eaich ., then Q adesits si.
case Qor Q+ benomes ooe-sided, and we cease to require Cauchy stability fr thatstr.. ei. oVr-a efprodbnwth12!.
formula. If both interfaces are houndaries, w speak or the "boundary cae"; ir at PofSneI. I!,ltlrtIi' 1 n a (,K~lS1 n h

leas on is n iteral iterace " seakof te 'itefacc cae".second statement is on immediate consequence or 16 4.3). Foe the first, nr usesi the
Suppose that Q admitn a oteady-state solation with jzj e 1.For 0 < j !S J it adtoa atta acysaiiyipisj~ K1rtaljj.>1 ota

will necessarily boor the frmoehslK/.)l<1

= 0.n)±fl') (0 < j !5 J). (6.4-1) Remark. This result holds even ir one or both interfaces are OKS-unutotble (or.

Ohservation 5.4).
Let A, and A2 (fssctiaou or z) denote the eeflection coefficients at the left ond eight, Theorem 6.4.1 yields a simple prorf or the first main theorem of Beam, et al-
resnveelinely. as considered in §3. That is, Al denotes the ratio or amplitudes or the Recall the notions or three-point linear maltistep formesulas sod Astabdity described
eightgoing signal to the ceft going one at)j = 0,and avaisgousely foe Aa. Then (6.4.1) in 12.4.

implies that a and 3 sotisry
Theorem 6.4.2 f/11liS!, Thre. 4.1). Let o, = u, he snsdeled on 10, 11 by

- i=At., isj=A$.(6.4.2) difference scheme Q consisting of10 three-psint linesr msultistep formula Q0 fee j =

J1 - 1, together with bouandary condittions, v3" = 0 ot c = I and (q- t)ct-order
(We permit the CKS-ustable powsibilities At = as and At = o.) Ir we set a = 1,spc zroliinS(-.9atr=0fromif5JIfQisA(4kthn e
then fi = At, and (6.4.1) hecnmes, P -stable.

= s 4 ~m)).Proof. From (3.2.31) or by a simple compuattin, thme left-hand reflection eneffi-

ceet, is

lBst the -second equaation or (6.4.2) implies roether A, ~ ;~o (44

Ai~~noe~ =I.(6.4.3) By (2 4 14), the A-stshilmty imnplies Rent > 0, ond it follows that the term is

parentheses has modulus at mont 1. This implies

We nun interpret thin as, rollaws: if at a fixed time step we trace the eightgoing mode A !1.1 foIs
from j = 0 to j= J, reflect it by a factor A2 to a leltgning mode, trace this back

to j= 0, anil reflect it by Al to Lte righitgsing signal ogain, then me must bane the Moreovre, the nunvniohing of the denorinator of (6.4.4) imiplies by Thi. 4.3.2 that

same value me stirted with. the boundary ut j= 0 is CKS-stable.

In (6.4.3), all or the quammities Aj,A2, xc. m, drpend on z. This equation contains The right-hand condition e", = 0 is trinially CKiS-ntahlr. Thin condition is

all the informatison relevaet to stability analysis: Q admits on elgenselutiun foe a given equitalenl to thet inqpaitito: of a reflection cefflict

* E C ir and only if (6,43) is sa-tisfied for that z. Determining whether this is so roe

a range or values of z may he, difficult. The ado-sitage of (6i.4.3) is that it permits one A,, 1 (6.4.6)
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K, I

Sinceeach hn sat s (KS-stable, (2 is C KS-stable by Thin. 5.2.1. It remains

. show ha tere are t ,o t.tol lits with zl I> . By the first statement of Thin. i

I I I together with eqs. (6.1.5) and 16.A.6), we would be done if the inequality tt !5 1 Fic 6.7

aere valid, lincer ,0t > I for zI > 1, the situation is not quite this simple, but the its

idea of Tlitr ft 4.1 still applies, and with the use of the fact J > q, the proof can be

finishod in either of two ways. Ilypassing Thin. 6.4.1, one can return to (6.4.3) and

obtanimediately tt, contradiction By simple geometry there follow the inequalitie

I = IA,A,(I,/n,)i[ :S sioic ,s.,s-J = (,12J-., I I-, --,1 <5 1-, - (-,) 5 1-, -- d;

for any sololion with i. >o 1. (For the econd equality we have made use or (2.4.8).) the first two terms are equal if and only if Rein. = 0 or Re x, = 0, and the latter

thetrnatiely, ,ne eati shift the interface by renntiering the indicss so that the old two if and only if I(.l = I. Applying thew facts to (6.4.7) givs

j = q bcote a ne, j' = 0. after whish .. ' will satisfy
iA2) _S 1, (6.4.8)

IA!d <_ ,lr!,io./oi(l < I
with equality if and only if either Re, = 0 and Is.) = 1, on a, = :. Obviously

rot a1 > I. Then Thin. 6 4I aPlies directly. I one must then have IAI _ I for the reflection coefficient at the left-hand istetrac,
also, with equality cr, der salaogous conditions.

Thror-, 6 1.2 how the following siMpfe, if not very pretieal. analog for problems

ii, which thre A stble forttntlas are separated by abropi. hange interfaces, By the Frst statement oF Thin. 6.4.1, (6.4.8) and the corresponding bound (A !5

1 imply that Q admits no eigensolutions with jzl > 1. By the zecond statement or

Theorem 6.4.3. Let s - = be roedefed on (- Iool by the see i-terjace that theorem, there can be no oigensolutions or generalized eigenslutions for Iiz = I

model Q of Fig. 6.6, cornposed of canaestent A stable three point hear rultstip either unless IA) = IA21 = 1, which by the remarks above implies either Rea, = 0

fomulas Q, Qo, and Q-. Then Q admits no eigensolutions or generalized egenieolu- or s, = KI = ±i, and analogously at the left-hand interface. To complete the proof

tions ath z I, except possibly an eigenaolution or generalied eisenseoluion niibh it is therefore enough to show that each of these last two possibilities implies that

I that is son-strictly lefgoing in j 5 0 and non strictly rightgoing in ! J. the transmitted signal u~z is non-strictly rightgoing. In the first cam, Rex, = 0,

Proof. To begin with we have a problett with interfaces at I = 0 and j > I, this is immediate: either Is,! < 1, and the signal is evanescent (position (7) in Table

bit ow in the ast proof, let in shift the indies so that the interfaces lie atj = and 21), or x, = =I, and it is a stationary save with C = 0 (position (5)). In the second

.This will Multiply both re-flection eoeliehS A, and A, by the factor cam, is. = , =i. then we are done as before if it happens that i, = x, = i
/t-.. Now by (3.2.5), iaking into account thc shift of indices. A, itar tho value also. On the other hand if si A K, then by (6.4.7), A0 = -1, in which case the

a, - a ..7C!fgoing and rightgoing components cancel each other and there is no generalized
A z = - ( .4.7) eig iolutio t often all. 1

(flrer 1, r, and t stand for "leftgoing", "rightgoing", and "transritted"; these ab- Now- let usroturn to the to-bounldory problem. The more catc,1 licttd results

I ac rothsoreof(32.5), ah ere i stands for "incident' andir for "rofleed".)of o I ) i involve strongly .1 -stable sch'ee.s used ic coibination with the boundary

\nuiltlic" willis lono of generality a > 0. Thon by Thin. 2.41I, a, and 
5
e lie in the

Forniulo STI (3.2.32 at j = 0 It is in this cane Ihat Boom. et a. obervd P-instability.
io,1 i let half of the unit 1isk (In

I  
I. Re. < 0), lile K lie outsite to disk in fccr odd itlities of J, tne %c,'el,il Ia het ootlnsCc appeareid te he /'-etable, hut for

g righ iLf Line 2I > I, I 0)> IF) , eo. he -cfligisii -In in indicat-i1 i Fig. v7:,en iii -ice I '- t;iLit belat on .;,if oc re
t 
tited ttition to sulues I > ft(b( for

ItO0 -ein.,, [liner"i tfQ) ii crs;i ,izh' to-ticu',i ,Ycn i'a s itk~ iiorly. wlt b .
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We can explain and extend these results by means of reflection coefficients. First or by taking the logarithms of both sides,

we establish OKS-stability for strongly A-stable formulas: Iog( - . q log

Theorem 6.4.4 ((Be81I, Thn. 4-.2). Let Q and Qo be defined s in Thm.

6.4.2, except sth S replaced by the (q - 1)st-order space-time etrpolation boundary hence

condition ST (3..3)t ) = 0. If Qo is strongly A-stable, then (4 is GKS-stable. J 
" 

eoast. qlogX. (6.4.11)

Proof. For OKS-stability of 0 we need only prove GKS-stability for the interfaces This kind of relationship between and J is just what Beam, et al. observed in

= 0 and j = J independently, by Then. 5.2.1, and we considered the latter interface practice.

already in the proof of Then. 6.4.2. At) = 0, (3.2.34) gives the reflection coefficient By performing the above estimates carefully, one could derive a precise condition

like (6.4.11) that would be sufficient for P-stability This would complement nicely

A, = -
t  

;' (6.4.9) the third main result of (Be61(, Then. 4.3 there, which gives a bound much like (6.4.11)

that is necessary for P-stability when J is even.

We need to slow that the denominator cannot vanish, i.e. zt 34 -I for all z with It remains to give an explanation of the odd-even efiret described above. We

, I1. I ly Then. 2.41, the strong A-stability implies Ftl > I for all z with z) > I have shown that for J oraller than the order of magnitude indicated by (6.4.11),

except in the case x5 = I By Then. 2.4.2, Qo is t-dissipative, and therefore with the left hand side of (6.4.3) canot be guaranteed to hate modulus les than 1,

Ke = I one has either z = I or izJ < 1. Neither of these possibilities permits z
0 

= and so an argument balancing reflection and attenuation does not rule out growing

-I. 1 eigensolutions. flowever. from the above results it follows that in the region : -1,

Now let us show that although the model based on ST is KS-stable, it can no s, , -I, , - I, where A, iv large, A, ill he appronimntely negatise. That is to say,

longer be expected to be f'-stable, at least when the meh ratio is large. Assume it will have large negative real part and relatively small imaginary part. Combining

X 3I. Then by (24 31. o r has K = I/s + O(1/), hence this fact with (6,4.6) shows that the left hand side or (6.4.3) has sign approximately

...- t+([), us =,+0( ). (6.4.10) )I(I(I'=(I'
If J is odd, the sign is negative and (6.4.3) cannot hold, despite the large reflection

In particular this will hold for z a -1. [lut for these values, the denominator of coefficient. This is why P-instability does not occur when J is odd.

(6 4.9) has magnitude O(c-), which implies that the reflection coefficient will be

very large:

tA) > roust. I X
.  

6.5 Growth rates for two-interface problems

This explains the observed P-unstable behavior. Ior large X, the left boundary of ( is In this section we continue the pattern of argument of S6.3, in which necessary

"nearly OKS-unstable" it admits a rightgoing signal (s., z) l (-1,-I) stimulated conditios for instahility were derived by balancing amplification by reflection at the

by only a very weak leftgoing signal (xi, z) as (I, -I). interfaces against attenuation in the interior (eq. (6.4.3)). The dilference is that here

F '-stability to be assured by arguments based on (6.4.3), the attenuation the aim is not primarily to rule out solutions with a)1 > I, but to estimate their rates

I(,/ the interior must be strong enough to more than balance the amplification of growth when they do occur.

due to At. Since (,/ste = I -0(1/X), by (6.4.10), this will require Both §6.3 and §6.4 were concerned with the fact that the combination of two

roost. GKS-otable tbouodaries or interfaces may be mctah-i Section 6.3 considered catastro-

(l -- , phic instability it, the voe or fixed separatio, Aj, and §6.A considered I'instability
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Ilir Lelase or r-ui Ar.I AtI tird, rlated pboo ons ivdseie by 3 rise is vaiou (6,41.3), forl enn l t across classes ofr le~ni it 0-oud Ws valid. The set of

a I. ,.Iiise tis is Chapter 5; if a GAKS-orssahtelie bodary is used prolilesse to lie onsiiered in definied ic the follow og pairameters, tli el we have

j-i. a , st, eisi it, finei Ar, the iiiteraction of the two boundaries may convert give labels for eqnseie..c:

11, insuiahiity with e,1 = I to eupocotial (Kr7l, g2; Kr
7 3

, §171. All of these are just (Aj) hued Aj (= 1),

th:ret of a variety of effects ahicb can arise that invoice "reflection bask and forth" (A.) fined Au (i.e. J - o)

tewee two boundaries. The analysia in this section will cnsider phenomena of this (1) A <- I (GKS-rtable or ustable),

sirtsy sncsrlatie ally. to see what kind of reflectios is really going on, aod What degree (2) 1 < 4 < o, (CKi-stable ur ucstahle),

ill aostwh, growth, if any, to rupees in various cirsuosotasees. (3) A = oc with Izi I (CKS unstable),

Again. coider a iwo-isterue cosnstaont-coefficient model Q of the hind described (4) .A == with lot I (CKS-unstahle(;

in §6.4 -lu illustratedi ili Fig. 6.6, with either J censtant (the "fined A3" e ase) or (1)1 oc u no I for 101 I (Qu totally dissipation),

.1h = Ae, e-istasi (the "fixeid Az" easec). Froni (6.4.31, we knoa that a steady-state (N (VD) . I fur - With In = I (Q, eiispts)

_i,,ic,(6 . 1) r, -e ,E c...cz;t olyseeFpt iti eas (4), we aune that ye Csiliss-ltpubesbii eigenuolostios with 1z1 > I

o.nl'=AtA 2 i (6.5.1) is present. As the list suggests, the ,rgiirns will depesid n A hout nut on (;KS.

stability per sr. This fact suipports Ohs. 5.4.

fsr that o. Is is this equsat ion that wssrts that uttenuation asld assplificonion mast W ilt~ee..pio1css uh-te novn e-i auso

balnce F, ipl~it le u Wrteor z. First we oloaify the "best" -is (I, eost.), thes the "moro" ones (K E

,c , /-,I C: t, A = (AIAII. (6.5.2) (cosut.)'), then sarious eases is between. The results are sammoarized at the end in
Table 6.2.

Then 65.)coo he writtenA<I

A (65.3)Suppose A < I (case (1)). Is Thin. 6.4.1, we have seen that stiere coo be so

We use the ymoiol "se" without defining it precisely, because throughout this section steudysnuse sellitioss with a)I > 1. This, rules oat ao exponiential grnmith 00 Mlatter

we will igo-oeeonstant factors. (Of voarsi , in (6.5.3) the to siden are actually equal.) chat eoiihnutio of tire eiii!oimg p-rrretern bh.- is is eIT' \ can interpret

The patters of argument we will use is to show that (6.5.3) eon holid only when (a) shin in teri of energy wooing back arid forth betweer iitrae .~ fo ws as1iitia

bus a certain size, dependeiit on J1. It then followo that one ean ohscrve 00 unstable periihatise may persist fur all tirme, reflecting hook arid furth het, s interfaces,

growth worse thon (or., for salues of Is) in this range. If In I + t ihs ttehrt it Will Tint grow. If tQn is totally ilsiteit should die oa.

rate of growth hecomes One kinid of growth way still lie enpeeted. In the case of aiil'race (not

If~) u (o -e" all0.1- coet.)",(6.5.4) liesiar) I hriililer Withi Q, ielsiiiv (Avi)), a sigsal of the abov s t tr pped
lot I- i, i Vler:ies liya radiate -like energy into the left- otreighthtld semi-

where Flo) deootes, may, the 2 norm )IV'))a. nirill regwir. This Will causealgebraic growth in E. In the fiord Ar eane, th growth

Our airs is to fled worot-sase rates of growth E(o) for sarious ctasses of" two- iii) lochok iiirvl like iF I + vi. -twich isnrot iosuwblheaiis of th iuiitial

irte.rae problenis The o-oe idea amousst to assliring that (6.5.3) ir a safficieot ri 1, i In h the yii Ajcu-v. it will lent lihe E ItD, +-r ',,nlc i table,

-L well as ilecessary eonilition for a stI d-state sel liti- to exist,. Of veurne for par- Iii e - - 6 '11, i"iiilileo if (h lliislraie II ee ier iitalen

Lierlur prrrlltiu this may rot be wc (we iriigbt h-roe Iiuo~n( -iostead of Il ri Tshei i, the- sI - .1 K I silll grew :it 00"'isUioc- lie sYrri l(.1 is
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a wild card indicating any of the choiccs of the parameter in that position, though compound or one or two strongly unstable interfaces. In cae (A ), it wold

be unstable nevertheless. The reason is that for large J (small h), a perturbation
near one interface might grow catastrophically for a time before feeling the influemce

)A )-()ND(: stable algehraic grnwth, E no I + V) (isterrace oase only); or the other interface and rosfinally decaying to 0; no h - 0 the catasatophe becoie

(.)-(])-(D): no growth.
Wels.

Cme A = oo with Isl > I We are however concerned with worst-case growth, for which the summary of

At the other extreme, suppose that one or both interfaces admits mn eigensolution models with A = so for (a) > I is very simple:

or the Godunov-Ryabenkii hind (case (4)), s described in §4.2, with an infinite

reflection coefficient. Since such an interface alone would exhibit growth like (const.)",

it is natural to expect the same foe the two-interface problem, or worse. in fact there Case I < A < so or A = so, fixed Aj

can be nothing worse; this follows from the bounded solvability from one time step In the first case indicated, one has two nonconserving but possibly GKS-stable

to the next of any properly defived difference model (Ass. 3.3). It remains just to interfaces separated by a fixed number of grid points. The example of 50.3. exhibiting

confirm that a steady state solution With E (const.)" can indeed occur. This raises growth E n- (fl)', was of this kind, namely (tuj(-(2(-(D). Obviously if Q. is

the question, how can A = c and o > 0 be reconciled with (6.5.3)? nondisuipclive (ND), or if A = no instead of A < co, growth like (onst) should still

The answer, whi,lh will reappear throughout this section, is that a steady-state be possible. There is also no distinction I -e between the boundary and the interface

solution with two interfaces will not have z equal to the value *o fur which A = so, situations.

but to a perturbed value z. Assume first o = I. casc (ND). Then the perturbation There are however qualifications for the cases (A)-(3)-(D) and (Aj).(2)-(D). Let

zo ?o must he large enough to bring A(z) down to 0(l), which means z - a0 n Qe be fixed and totally dissipative, and suppose first A = no. As in the last diausian,

O(I). Since Jzol 0 1, however, this is ot inconsistent with 14) > I. Hence an we are once again led to the perturbation (6.5.6), which is extremely small except

exponentially growing solution (6.4.1) may occur, when J is near 0. But this time Iz0l = 1, so that (6.5.6) implies that (4t , although

If Qu is totally diwsipative (case (D)). growth of the form E n (cons.)' will perhaps larger than 1, may be extremely close to it. Therefore the growth, although

still typically occur. but the perturbation argument may change. In case (Aj) the epon-ntial, will be slow in this case unles J -n 0. On the other hand suppose

attenuation K0 > 0 is insignificant compared to the reflection coefficient A(o) = so, A(z) !_ A... < o for some A,._. Then (6.5.3) can only hold foe J small enough

so ez - to = 0(l) again. But in cao (Az), J = 0(I/h), and o
3
J is not bounded away so that n

5
A,,, > 1, say J < J0. For practical examples of this type, such s

from 0. Assume that for z n z0, A looks something like the interaction of GKS-stable interfaces with Qo =l.W., J usually seems to be 0

A (6.5.5) dissipation almost always produces stability. This is why the example of §6.3 had to

be so contrived. Unfortunately, it is generally hard to prove that Jo is so small, even

Then to satisfy (6.5.3) one must have fsr particular examples.

= 0(S. (65.6)In summary,Z'. - t0 OW )
•  

(6.5.6)

For any reasonable value of J this implies that z'0 will be extremely close to to. In )Aj)-(3)-(ND): unstable exponential groth, Ev (const.)';

other words, the exponential instability admitted by the two-interface system will (Aj(.(3(-(0( mesh exponential growth, Eve (ronst.)', cont. - I ' I;

look almost exactly like the single-interface instability with z= to. (Aj(.(2)-(ND): unstahle enponential growth, Ez
0  

(roust.)';
sob lniut ourly ihe(AJ(-(2)-(D(: E t (const.)' for J _< d0, rno growth for J 

1
s-

Of course the two interfaces might interact fortuitously so as to rule out such a

solution, as mentioned already. In care )Aj), Q would then actually be stable, even Case I < A < no or A = co, fixed Ac
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'rhe st in lotre.stinig net of eases reiiss: it, -cWith fioed Ax mud either I <Comipare jf~r71). §2. or )Kr73). eN, (17.10).

a i,;KS-stable or utntable) or A = -u bitt 1= 1 (0K"- unstable). Oepciirg Finally. awhal awill happen if A =u oiot Q0 is totally disspa ine' No toatti-s

.o a,! i,~ Sb Sl if interfac is present and abeefier Q0 is dissipative, four different hoa- large .1 is. it aill still be Possible tii choose Zo - os to satisfy 105-61.Ioaur

rite- f groth triy he expected- 4 qwill nore to lie eceediuigly s-11. l:i1. (6.5.4j five the rote of growth

Ie can- (Aoz)-(2)-(ID) has alreaily boos settled by our discussion of the rase E(rt)vf (I-)". 69

A-j l i21-11) There we argued that for J > Jo, no growth will occur. Is the fised

Ai sitlioi, we are islc conrerned with the limit J - co, and so one should eupect whieh is exponential for fiord .1 hat oith a cnstant tint deereoss rapidly with J.

liii griio[), here. 11 Castafsos ban stated a theorem, to this effect in (Gu81). similar Is practice this, growth awill he ro o~pletee itisigniflicant, anid Q will exhiibit nothiisg

-ilts f- ptiotexeninpler oppr- in )0u72(. S7. worse than whateoer inostability is(cuitei b) its oiriliidalfp unstable interface (or

Sq.i.yon that again I < A < mu. bat Qn is nridinsipatine--ean )Ar.)-(2)-)ND). interfaces). Thin conclusion applies in piasticuar t, twii-bosniiary probleminnolsisg

Whether or not Q in IIKS-niable. in general it oill be susceptible to enpunientiaf hoedeelne GKS-iossahilities uf rype l, <C 1, au ilsse iii §5-1 This conris

grow-th ill I lent n), E do (enist )' There are two woes to see this. One is to think Obseriation 5.10.

if rellec ios, bank ,all birth n. I incireases, Is the a-cent ease, a signtol might hounce In suiiisay. for lis-, sit-liin, sif fined] A, typr oc hose

rcq.cate1ll litwes, -,itrfcs ie r-oinig is iignitude by a fastor A > I with legot

earch cireiit Itill thi .siIA cone the te;iuel tiite m;I he 0)1) between bounces, and soWu-2-N1.cSbegot,1 olosd

a, ot grooth ratessl Alti riatinefy. one ran, argue again by perturbations Ao(1)-)( al rnii-eteicpwa

00 - If 100)= do ) =I, then i gicaly if 1o1 mu +±, we will base x(4) mu I-. (Az)-(-3 -( Nl un1iistahle growth, E 17 J)

Since J f) t Ii), )ffiS3) becnmes the rondition

(I - )-'/4 muAse (6.5.7)...

ohieb ioipliencsm h. Is other words, following (64.we should obverse growth like Ie t i.'lonariniec the result., of th ;in d th li fres iiii section. The details ass-

E~v) mu (I +h"= (ront.)'. heen riplicated. buiat ir niin miidea i ilild For a fronrig elgennofutios to exs t,

Neite that growth at thi!s rote, althoiugh stable (tabe 00 = eonst. is (4.2,5) or (4.3.!)), the izoifitio by scni-ri ;iat th li i.lnsiiii- 1, l-,ie, thi-einptn ill the

does not bieeomie we-the, an 0. Thin euntradic s lie itmpression ginen by Reamr, et iterior, as, i ideted liy (G.5,.31. In .iilid. 1 oii.iiri 1i. initerfae with reflection

a] in lie4 I1, bat sifpie~ts their view lhtt soonr at iks P-stability may be useful. sellciir Il(o do m, on the refore ir-sstigai i-s torirhasiosns 
2
s - e, to resue

Consider nuw the ruse of Qo sonldinuipatise tit A do co. This in the situation A.',,)(to 0hli rigit size The grswil. rate is t! ell gis is by Pn) I do )'-

ineitiooei by Kriss in which a lito ittbility iap he cosnerte to enxeponential. This- .i;dy-si de, tot deplend ot. alethera -y i KS -unstable wiiire ore pi--

The epstilgrowth is however tist of type )int).but of the weaker term emit, roCnbriiig Osersatioiis 5.4 oil "i Ml. In a prolleiruf 5n-d Ac. type, ilbs-

mu (1 /h)'.- We ran se this by I(lie usual perturbation argu ment. Once again, insitaiilit i at either iiicrfac will niabe itsi feltli o h it i ntirlsi -i li usual way.

conuider 1z') do I + er ani uonsnie that 16.5.) holds- Then the condition (6.5.3) is hiilinitcrae lion, of the tins irt-rlaci l 01 lrot aoiisu-5 lie i feet i lnethe reri-icion

(1 ( u~ 6.5.8) ooleeit.raiiitsi-ct, thut it hoioid.

We- base not. dincitsis borde'lioe lKSia al-lu-istra- if type, C -o 0f It
'or thin to be satisfied. t will Ie magolitode m h lng~l/h). Therefore by (65.4) we oeouthth rf tfuha-eity-1)oinid a otote

aill obseror grcwth libe Irgtj:o l r sih ,1 c 1 1 ,Ti a~ -al

lEst) mull + b In0g lconst.)iit h mu (Ih'm rosst :lirt-e, huitt lse d iiit elaugcI.' heLi.rul,il-tisc Ibi ruby 'h) l,.
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5.t0 differeiitiates biorderline eas or tyiej n( < I friit thins or typo C 0 (Ona the

other hand, with C' = 0 is naisly happens that A4 in finite also. an we saw in 15.3.)

The grnwth rates we hone obtained in chin sention are sooaielin Table 6.2.

Once again wse eenrphassise that These rater listed are typical ones, and inlay toe false

fnr speeial peotclic's; also that oar odsel han involved just two, intnfaess, a uejew

esuatin, and constant cefets.

I'AnLP 6.2

6.6 Three at monre initerfane.

PiedSofined Aj In tlis final section ae will iooke sortie reniarks on ntabhilit fcr prohiers with

chsnipatine o-nlie. dissipative nodise three 1 or , m ore nrfaces Stic -onfigaeaino- eanet If' the design of cnorposte

loiiilare oreiiicrface r,iii . They are a]-, iclpocilt tn thle 'cualyois of adpatisec

A < I i- gciioc I by! 9i -hgri-ok cciih refi-er-ot rn-e a1ireli ouiild likIe to he utile. tori -e houacn on growth

7 eaton wiltioul ceiequirinig ib onl e of gniii 'poinst el-air. eefil-elinnt interfaces

K. I-- a~pproabh i iiis Onle iiigiii .tchink if any ne-dc il h cariakle coefficients

to I -. ci- grcoch -ntl
1  

I(115c i-ins)-stth -o ha- cee nooei,itI in this itito .,,l c i-itnicgcf.a-riea of

I it aciscl d~fecci~ee hncilcic separd byr itiac- beucoeac - f ri poislo.

Trhe par pane. ii siwil :,o ,ri ,cfnhe, yrohleni in iencIn i, f i nlerai' in tn obtain

idht .1er-se. A partit ittac arc-a utecre (here is a great nceited stic -ots is io the

,lad) il tticc;Ilnii,ipiadvcfirc,,AIan dm cc--itccni,i-.l ,, it refic,, ictyriitlicoin.

A" I
1  

a cIi. total ls,tic forols cacti a, Ah oil! Lcc scahk, 1c no i -al tlcrosru

aloofg tThese lines ;ire 1ii--i, eoctilt for tl- il~ ice r i - ici ,ooc is (fly

AsI a gecica c,,rI le. .I
t 

II) tihcgi t; ui I t)T il- glr a Ii ct- t K c f sl~t1 iity, i t see Ms

N -P -nsa n st hle ohcak thle prior of stalti io-' -1l01dlt. For exao I IC establishing stiability by

, ;.le nergy c iul for a ii flt ice fcro-iIl Wick variable -cicis is anuulty mnore

CKS-usctable ItIbTi-lt wlicc- b kncoI ictsfaie

-- ~~~~~~ ~~~~ Ciieriioil QIitocl a f ... I,cte~o of isartd^l '-ic formuila
& sinog idd ual interfaces ondI)itr. p~h. )af onh rgi pln.I. lrsl.o
aeGKS-s l in 5firsc two rows) (';Vc 4. we k 110 prel icicle1to to IIh for C S -ii 4t 72,o ~ in principle. Is

Iregion hc con inctcf-ra. iutrcoic Tor each . ssil 1, 1 Ih liet of lefrtgoiog

si ighigo[c- iil Acl icierac ri- fl,, i n .Ji-cic acd ro.ioioor

- tnil li! ,,-itscc Itici I!n 'K I, 1 Ic 1:11t i cI c I,,, c- g for.,Q
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GA
1  

-. dr f -ti .1 if ., hose earnitPermi no solution .'sl, 1 of Ifart, itt it. .iifia~isI rit tliii. in Lt- ialtisrtinis-inti

gtrtfvrtrti,t, ) renloti yrsl.rrr it in not an e Tsiniattir I, d'riv- a ('rit

4that in coniservd at iriterfien. For . sample, let tsiirt of a tire- 5.io sear

* FI 6.8 niitetiforunlaQ Ifre., a , applied heritsn an arltrrary fiiiiernirernftri',l,

iriesli refinetrs-nt" intoerfanen 0 t the kid described tn I maniple 3 4 of 53.2. (Ti-~ in

erialenit I ajplying Q otI .ini torn tio l ih a fiote -nilet iut jniicmtrng,,.

i, ijl-f-t , hrex~tnct o asoutsot , Owith atl evelfini nt ostis..) Let ft tie irtpln tue f -nrgy nin ID, .1- V,,wer '

-t a ,- ) 1~, 1, 1. i-I ur i, tit, i the, it-Itcmiite tt-nnendpuel anofasolatiwian.3 'h -sh e i cv., ur"g int- d

7 t. , t i !, "n nfirti i -drrii. aitli any cotinantiat of left- I .h-in on ineet nigual in p-n or: ene sideI int, an t.I Is ri-sult 'art be
tealil on1 r,i ti' tw -d-&e,t-n Itri thuitn oneea , itele,, in Tint 6.6 I

p, that Q aidmits ny eign-olrtivss or getterolieil eige'i,tllns fsr 0) I mitt, vtrictly
Tj- t , i ilIt diny-F* f-t Tew oassngting nigoal, it on srI hI, nsir region Yet rot Si , I. the rset

'i I. It. IrQ, I,].t d r: onocfit(,Lmigt uarLit reakok, ai, fur it torns stir I: .i ri,, . .e h ierei inreef-e ti Ititigetirsrvc
fthe r~~i sf FiiiG 8 -an :in' or' A, ,iith the niodels w one yr4,ThTi.I6Aino plabe -ntog .t uselt Q,1,,b,

*Sein-titrid-i .erlier. itt oniiit'' p riiperty to look for is consvervation or 4.lint Iis.tndar l isetit , op1 ,i t nosrIno'ote-ttnta hrQ n6-to

19 H i a , t, i o ,unen tatigt e se.Thinusatil uggtsn that rthe ftIl rna i generlly he, an morb hleeiIe for
'tpp.- 1,:it hi tnes at -h,It a f rotiitt (j - tbh, d one eon defineca nel energy 4' The, sonic ntrnlion in uiggntedt liy the iliserat' of S3.3 tihat in nint probleons.

ir- it, t.. -'re -moi, soti-frig; the folinang tIni propertie.s fnt all a with I.1 ! 1:te1 cgIo n, e vnfrjj=1

/IIt; <' K (isp len 0) in a region ante notel lefigoing (renp. rihtgoisg) modles Alserniarively, in analoge to th eltnitien if 56.2 §6.5, -t coald base It

ire p-reset; itntna (,it osplisnden Conssitler again a probletti with osly one lelsgnuing ando .. c

i,)b _ P if 36 in not Ott interface. rightgsitng snlntionint enu ereach pmit of Inter,, r (ttsitothoinc in

hr atn iste rfot at 36 tn nconsre enetrgy" ,tit rpent to IV then mneans sim-ply that =it n s,

r.-'itoI 11t. at trac as well anot tnsn-interfoee points. One obtains imniediatelp

t.. t-Ib ng nti Iicienit nonidition for stabnility: hot tis tuirtn, not to Ie, no t-tir thaun rthe t, debiti-ti etunidtred shone. llnmeer,

Tl ers 6.6-1- Let 4' satisfy vonrdittons (I) and (ii) aibyss If (ii holds also at the npos'sibilitys~'

o.. ntfr points jh. asd in addition a: least one inequality in (i) or (it) is strict,it

li: Q) is fA'5-tlable.nitn pruitim 'tie thin in.i-ii riof 4b ". lIn --- eeid ;it auinitrrfIevino, that sLte

inoof irt her -,t i, untabletin~omts or getieoliver igt-ottin let it, ratn otinmit .. ...' nititi im iIi. ". t;oil hi - .li't roliaitt I ;ive in' larer

ie i-ereoltiting sots
4
-, he outuiit,d. It'sI L-h atud de' be posins liy-tsg to te arriflisite tutun tlieiii ilit116 ,ii sainto -tta us-t~n of tin.ti- aK-tterito

,harid the rit all o itall irla ,r-enyctiavlp. Thent condition (i) ituplirn isn-inug 1.11 ! I irtt , lieoit ti- n, tn't . anti *,!.ire.. ..r sit a''tnthat it tray

tt,,tbe is ponilile to pr-s, s forili Irrrita.ti rnt ts

>t % t 'b, >t, >-t -turn, si-I. ItI '''iri 0!r. tm--1-m1i.'oi
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APPENDIX A. PROPERTIES OF STANDARD DIFFERENCE MODELS 
I

In the following three pages the properti of eleven common Ii!ar difference

formlas, m htly models of u t = cut, are listed. T o h entry eves: ( ) name, (2)

fnrmitia. (3) dispersion relation in s and z, (4) dispersion relation in a and w, (5) I I
iKrop -lo-it, f ('[ , r+ti . ...... orTa,,lor serie w. . ( for branch throu~gh ," € ~ !

r o-aer sil o r .rec irn . an ti I9) 1liss.palive a ,ntdor -dissipati ce. A dispersion 
I -:Ieo 0, -a -1 t i ,s ,.' A he - hfr ua oi i~

- oI 
Ka I I 111 1 these pl4t* indicate ohti.n ( , ) th t are-

-e; ir i li at til.d (for , ,les ith o e diss ip tio ). - I "5-

hee th itles for p rirers to whe, the properties listed above. and most of these

differene, frrtlna arc dinssed in the tent. 
+ +

7 i--. ,..0 )- 0

17 h~ . 17

p Z5: I I

II , S* I c. I -

+I 3 I
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In fact if 12 o L,,, inro (61 it ,, _ 6. we will ai i,= (I3 6 c I

No- the key idea is this: the .oiton li'7  obtained sader i ,r identica n, 1 0

to the solution (v, obtained if Q i. applied with tafi! data cero and bonarV data

equal to the numbers {qg} produced when {17) s i nsrted in the boundary conditions

(4.2S)

APPENDIX B. PROOFS FOR t2 INSTABILITIES In other words, w, can study the initial houndary aloe problem b, neans of the

Cauchy problem. The distribution {t-, I would be an exnct shlition of Q with g -- 0,
TheI iripone of this appendix in to prove Thrns 42.3 and 4 24. Recall that we as well as of Q, if it happened to satisfy the hoogeneiuu boaniar ey srditiooa It

i.. ci.. l 1rh a dilferene nodel Q for an initial boundary value. probleot on r > 0, doesn't, hut it does satisfy Qf if we take just the right it h i'ri sotc "equivalent

e i. hthat t Q d,.ci's thI s.. rig.eo ist rir i a applied away froit the boiida .ry hotinilary data." Note the i06arit) with the aegt oritetss or 63 5. nd ir Fig It.1 with

" and 3] .'lete the oietatot Fig 39.

S (t.. ' 0 ( , {)...{ i, , . - }) lirnig. htlry data). (1Il) . i i ea kesi oia li 'li ifistie'.l r1)l3igitiggc.teil ,ige lao

q. i , data), (1,2) tier n ti . a I-lc v a tye n eiiyi, t lop , .th., n ,f i i ,i a ti , , il :tt -s ate

I iu' ll i M:! d !;i I nta![ In fact ,i o , i 'a ce's i: '- h - I , u VI1

esi'i't~ti' : dqIit,s oiee Lkor1t1,esle ii'ly a . ' Of V =ls'\T. I ''is I ' 'T, ;,-,, T2;3.w etc. o he

Si rta, " e 2)) %%, - pp - . I h,,, Q I a 'tly ri lLtgotti i v , ni.t i m d ' ' p'p. d 'at ik, p hii it '

' .. ., ... l | 'u ;f ', I ! [it ! a , i f or 1, , : iJ L h.i ' ' ''ir i' " l ie tlii

i 1 ' . rt tolli U 0ito rthaii
Thin, 4.2 3. r> , nat

('onjetiln ' i ii itr ri . . at I irlirne ea lt'elioi 't f is fIen,:its I' ,, r 1 M

Thin . 4.2.C ist n .' ' " ' I I 'a ! ti ; l te

N iI til0 l ' - lI ihi I I f.ts ' 'lir '1[ 711 'f 2 3 The, ocdIre of the lri s ,I T .' 'I

anli,, I ,i I h, s," tkiil, ", r n-d rli, 0 u'uhl, ptnblie ' odeed 6vl i r .

rot.:''t ' i, i1 t " to ti -i t' t ....nit a.t. 'aft iitiog ir .s ., I -nr o Irt t gniioi of w otiirthiwae paket

-1 - "I'll, l . i " ls'ht oIl li-ik 'sill 1h tai Jack, tv ,l 'r l l d 1 .: it -, s 't
Ih, a ii s l l s t i e o ),tleert'Niitll 'n '). 11", t1+ ,l , i otcr, ' t! '') ,' ...... g d']

i -- , l )tl rn o "- , i i r,rii ii ig : I , r'il lt -r f. ....

r=.v ii re <i t'lirte ieu P to' "I,,.' t''.a ,-; ;I l!r ,'' i ,~ l~

t ts l ,.Iii.i ha t ' ' eK so
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I

and Wahlhin )11r751, Very precise statements can be made about how mall the error Proof. Obviously p E L, hence t
0 

r L.z also, and we can use Fourier trandrornm.

s,"(zj - r(z + CI) will be, and how thin depends on the smoothness of the initial We get

packet and the behavior of the dispersion relation at ((n,..%).

lowever, all we need is a very special case. Therefore rather than appeal to 0(Z) = - e(lCnC dt

evisting theorem, which would introduce undetermined constants and obscure the = o-(-

essential simplicity or what is going on, we give the following argument from first

principles - i C(-()) + e-" - eC((-l l)-]
e - '  

-

Let h and k be fixed and let Q be a two-level eonstant-coefficient Cauehy stable

difference formula that admits a solution e(
'

E
-

ni with o,ns EIR. By Thm. 2.3.1, The integral involving the first term in brscketa is just

there mists some group velocity C E IR such that the dispersion function w = w4L) eCI)Cnn) f e-(~°lClD - Lo) d = €,b-o, - _l).

satiniles -
sj= s+ C(L - L) +r(L),

V ( E E' (B.3) So we have, using (B.4),

wa: M(f - f.), - -
5  

ct ,m(.FA

for snome constant At. fly Cauchy stability, we have Im w > 0 for all C, which implies

In ,if) T 0 also. Since - e" is a contraction map for Imp 0, this implies < Mt( - (o) - d

- .. -o'j _ t,(e()) < Mi(f - ()' (1.4) '.= ) IMt )dL

rot anyI >t 0. = Mtf I1 )dC - Mt)lp)h. I

In what follows the Fourier transform and its inverse ar defined by*

If p is smooth, then the right hand side or (B.6) is small. To make p smooth

"-'e,f(.)d. , f(e J - Ld. 8.5) we will broaden it, while eontinuing to hold h and & fixed, although the s ,.se results

could be obtained by leaving p fixed and reducing h and k.

Lesnsmns 3.1. Let p(z) bolos6 to Cc (t iee costnsiovtls dsfferenti4kt with Lemam B.2. Suppose p(z) = P(cz) for sine fied function P E C2 a 1 E

compact support) and ,atuit PE L.. Let Q be applied with initial data Lt. Th7en

o)) = ,,.

Then foe any . 2 0 and anyI E 111, s"(z) -tieies Proof. Define y = az. Then

Ctj 5 ±) I.feI -4 5 P) I dz dP~z)

(B.6) 2.j d
2  

nJ d

whiee I = ok and M is the constant of (B.S). - J d1
5  

do dy

*See the footnote o p. 13 regarding thie choice of signs in the esponest.s
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Now define if = (t. Then might be

P(: :em c E 1-1.01, (.3

Let N be gives and et T - Nk. Consider the Cauchy the problem for Q with initial
=* eJ (i."((1)(ds 1  en JII"( ;)I, r; = e'(.P . I data

o(w) - s lsz, .(a) = P(clCT). (8.14)

Proof of Theorem 4.2.4 Let U. be the constant or Lemma BA. for the wave .,,a.. For any a write I - sit.

Now let Q be a model or an initial boundary problem problem on x jh, ,j t_ 0, By Lemmas 8.1 and 8.2, we have then

consisting of the formula Q described above for, 2 1 together with the boundary

formulas (4.2.3) 1-'(N) - Jp -.a~rAzC..lI !5

F. E ,c ' (B.8)-

where each S, is a vector of length t. We assume vO m 0. In particular, for n < N and hence t < T, this equation together with (B.14) implies

Theorem 4.2.4. Suppoe Q is Cauchy stable but 0 admit. styily rie.ghtgoig k - - 1 ! (8.16)

generalted eigrotioTtius

.7 = z" t. (89 heme A, _r a1~1. JA.-C'.

7-- Now we are equipped to show that ((gun is small, where # is the 'equivalent
with *i1 = (c. 1.and C. > 0 for i = I.... ,q. TMes boundary data' (B.6). Gies n and t = nk, define for all v ad j

IS(b, ! coot. " Vs > 0. (a.10)

Proof. As described above, the idea of the proof is as follows. We solve the Then we he

Ca chy problem for Q with initial data o(z) whose support io in z < 8, obtaining I-" - b-' < Js-" - F.P 
1  

-

v"(z) for n > 0. Then the restriction of e to z = jh, j 2 0 is Identical to the
solution that would have been obtained under 0 with vo m 0 and the boundary data + IC4.51 1' jP(r - -

=g  defined by IR8). In particular, given N, we will Pick initial data e° such that A,--+,A.. 1k / -

((O( 0 and<At

I
0
N"112 > conast. N, (B.t) Therefore for some As < is,

where 11 ((s denotes the discrete 12 norm (3.6.2) on j 0, but such that s atisfies

Ivr t (flit) I < As for 0o5jt.. -1 < .a (B.1)

Now by definition, i is the generalized eiSensolution (B.9) times the constant P(-l/j),

These two bound, will then imply (B.10). which Implies

Here arc the details. Uet PE CI boa fied function with Ms) > 0 on (-1,0), . S.b- =0.

P(z) m 0 elsewhere, and Is" 0 L, and write P., = supj'(c)J. For example P

181 182
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Consequently we have from (13.11) It seems clear that thin kind of setup should produce growth with renpect to initial

11.1 1. . data proportional to ,jW. However, no matter how smooth the envelope in Fig. R.2
tii E Ei(S. (B.17) is, the solution will not satisfy the boundary condition, for Q exactiy, and we are

'-0 .-- 1

By (13.18), each smmand on the right in 0(T-1). Therefore faced again with the problem of treating "equivalent boundary daa. It turns ot

:!13 5 IV)that thin ran be done by meant of Duhamel'o principle, but in the end one gains

T s <N (B.ts) nothing by having considered the proemofFgB.fahrtntatf g..I

for some A3 . Hence Therefore consider again exactly the setup of the lat proof. Let {.7) again

M 3 A denote the solution obtained under Q on (-co, co) with initial data (a. 14). Since $ in
A, < j(') kN(~ ,(.9 the solution operator for the model Q with bomogeneoan boundary data, w have in

general v-~ S Sv". However, for each n 2: 1, let(i) be defined by the formala
and taking the square root givn (83.12).

The other half or the argument in to show tkat flnN))2 in big. Now by definition ~ ,.8 ng,(.22)

of the nambers a,, we know that the generalized elgenolution (1311) cannot he nero

at more than I1- I consecutive grid points without being identically nero. It follows with r', on asual, given by (B.11). By Ass. 4.1 (solvability), i8*' is a bounded function
that one has t -- (j ),>AT(.0 of r', and with (B.19) thin implies

' It .-I i)T (B.2(3)0 cna
for some A4, so long as T : TO > thl max, C,. Squarerooting and using (B.15), we

Now by (B1.8) and (8.22), we have Su- = v.*' - i'
0

' that I,get (8. 11), on desired. I

Proof of Thseoremn 4.2.3 (two-bevel cause)

Now wie prove Iterating this equation (Duhamel's principle), one obtais

Theivrm 4.2.3. Suppose Q s Cauchy stable hut 0admsits s tricly rqhttoing M, = VV + S;N..I + SIN1+ ... + $ Ii + $NVO. (B.24)
rencrsihad eiqcwmlution, (80%) sir be/.rcr. 11.ew

where the last term is 0. This implies
c(') oast. Vf (B.21)

u."1) 5 NV '!Max -1I1S')) maxUO11
jor isflniteIV mar mlcger. n >0. SM- 5-5S

Proff The most obvious proof wan describedi in 54.2, especially Fig. 4.3. To hence by (8.23) and (B.11I),

adapt that argument to the present framework of considring Lte Cauchy problem a" cI' oost. )
1

N(> roost. %rV
modeled by Qwe could consider the proem illustrated in Fig. 8.2: s!11

This proven (8.21).I

9 0 9-aN

A ~Extension to sossltilseli dilairance ,nildah

FIG. 8.2To prove Thins. 4.2.3 and 4.2.4 in full gentvrality, we mast extend the above ar-
0(l)0(N)gumens to formulast involving vctors rather thanscoalars and an arbitrary number of
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levels rather than two. The extension to vctors is straightforward, given Assumption L as, aB. '-multltwel ens.. Let p(g) bekag t lC02 and asia ;;6 E Lt. Let

2.1 (diagonalizability) and the consequent developments of 52.5, J3.6, and J4.2, so we Q be apphed with iitial date

will not discuss It. What we will do is indicate how the extension to multilevel (but 'x- l'(')z-cf: OW
swaist) schemes can he treated. Wc will describe only Lemma B.1, s this is the heart cs fpz-C) . ., =ah

or the probfs. Then J" asy a 0 end emy E IRa, Ve(x) uliiles

Let Q be en a + 
2

-level scalar difference formula applied on (-ao, co). We can

reduce Q to a two-levell model or dimension a + I in the standard way (RiB?) by I~()-einl -CI)j onat ltI1 1, (8.29)

introducing the vector,
where t s ,Sh.

w'(.) = (V'(X) ."4 n''( ... ,v+'(n))7. (B.25) Proef. The initial data have the vactor form

If Q ha. the form (2.1.3), then the equivalent two-level scheme hoe the structure of a w()=(()epx h . ~ ~
companion matrix.

and the Fourier transform of this is
(0 1

010 1 0~4)e Wmw~( - F)

,v(Z)I() 2) where W(C) denotes

Q:11Q. Q:1Q, Q:(QsJ W(f) .(~1v(4)O .l..l..alu'(8.30)

Taking the Fourier tranisforim, we obtain By the argument above, G(f) has on elgeovalu e- r ot all 4such that ..(c) msate

se m (4)ae0(, (8.27) (8,3) and Im w4) 2! 0. The corresponding eigenvector is

whre each ;,(c) is a vector or length a+ I and 0(C) is a square matrix of this se W(t) =(t,e'CO. (8-31)

ralled the ampkfication ,nei. Bly iterating (8.27) and taking the Inverse transform, Becausce is an eigenveeter of G, (11.28) can be rewritten
w e obtain the repre n tatio ns 

. - + m + W~ ; ~ ) K , .'
w~~(z ~ df (B.28) oz f W )- ').- 4 ).l

For any wave number 4, the eigenvalses or C(4) are the assciated frequencies wi. - : ~..ei(4) + C14()(W(4( -W4j( 4 td(_

Typicall them ae a + I f am, bt rot soe value or C seroml thisvexpreWisioFrmwehiseedrossly theneerotly componentomp whin h w inchns t ).(z y By0(1131,,the
come together with multiplicity greater than 1, and C(C) will he defective (cf. Thea.fiscopntofheIegaofheirtemIsipl
2.1.1). It in this possibility that makes (B.28) more complicated than thW corresponding

scalar formula. However, if Co, and 6ft are real, then Cauchy stability implies that we~ (owi~-' d(.

in simple (Thin. 2.2.1), and Thin. 2.3.1 shows further that one can choose wan &AC.4) -

with b,4fe) = at ouch that a hosed (133) Is natislied. These facts make Lemma B.1 This Is exactly the Integral we estimated in the proof of Lemma B.1, and we nhowed

extend felrelows to multilevel formolas. that it differ, rrom rlm'tozp(x - Cl) by at meat Mlfl))m. Therefore (1.28) will

- ....... .... ~ f~



be established if we can bound the integral of the second term correspondingly,

V C ()Wi)- V(())t'(f - e)-t df I S -nt. tjj;p")(s. (B.32)

Now by Cauchy stability, ((C")) is uniformly bounded for all %s. Moreover from (B.30),

(B.3t), (B,.3), and the fact used before that Yj .- e" is a contraction osap for Kmn q~ 0.
one hasREFERENCES
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